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TESTING NONLINEARITIES IN ECONOMIC TIME SERIES 

UNDER MOMENT CONDITION FAILURE

Pedro Jose Frias de Lima

Under the supervision of Professor William A. Brock 

at the University of Wisconsin-Madison

Abstract

This dissertation studies nonlinearity testing in economic 

and financial time series.

Chapter 1 relates the topics of nonlinearity testing and 

moment condition failure. It has been documented in the economic and 

financial literature that time series data such as stock market indexes 

and exchange rates are generated by heavy-tailed distributions for 

which fourth moments are usually not finite. For such type of data, 

almost every test of nonlinearity available will provide wrong 

statistical inferences, because the asymptotic properties of those 

tests are established assuming that the series under study have, at 

least, finite fourth moments. Chapter 1 provides a survey of the moment 

conditions required by some widely-used tests for nonlinearity and 

temporal dependence, as well as a simulation study of the consequences 

of using these tests when the data is characterized by moment condition 

failure.

Chapter 2 develops a family of tests for the hypothesis of
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independent and identically distributed time series. The tests make use 

of empirical processes theory and can be seen as a generalization of a 

test for nonlinearity proposed by Brock, Dechert and Scheinkman. It is 

shown that the tests can be used for testing the iid hypothesis 

regardless the existence of moments of any order.

Chapter 3 deals with the construction of statistics for the 

testing of the hypothesis that a stochastic process is linear. It is 

shown that the large sample properties of the family of tests

introduced in chapter two are unaffected by the use of estimated

residuals in place of the unobserved innovations. The proof of this 

result is obtained by generalizing results available in the statistical 

literature concerning U-Statistics with nondiferentiable kernels. The 

result is constructed by first proving this property for the BDS test; 

the generalization to the family of tests of Chapter 2 is also 

established. Therefore, these tests can be used as diagnostic tests. It 

is shown that the tests are robust to the non-existence of moments. The 

chapter concludes with a discussion of the relevance of this property

for nonlinearity testing in general, as well as for the the testing of

the market efficiency hypothesis.
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CHAPTER 1: NONLINEARITY TESTING AND MOMENT CONDITION FAILURE

1. INTRODUCTION

Nonlinear time series analysis has recently become one of the 

most active areas of research in Econometrics. There are several 

reasons why econometricians, as well as economists in general, have 

become interested in this type of models. We first note that most 

researchers have always considered linear models as some form of 

approximation to the true underlying model, but this use was often 

justified with computational considerations alone. Therefore, as 

progress in computing technology —  as well as on the determination of 

the statistical properties of nonlinear methods —  has been made, it 

would seem quite natural to use nonlinear models as a way to increase 

the quality of the approximations that any researcher is forced to make 

when trying to ' capture the true relationships between economic 

variables.

Secondly, the models that have dominated theoretical 

macroeconomics and finance in the last two decades are inherently 

nonlinear in nature. While linear approximations have been thought to 

work fairly well in economics, they do possess some important 

limitations. Consequently, economists are increasingly using models 

that are able to generate more interesting and complex dynamics than
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those generated by linear models.

The emerging preference for nonlinear models is directly 

reflected in the econometrics literature, which has been invaded with a 

growing number of new time series models. Autoregressive exponential 

models, bilinear models, threshold autoregressive models, and 

Generalized Autoregressive Conditionally Heteroskedastic (GARCH) models 

are just a few examples of the vast class of nonlinear models. Although 

this is an indication of the excitement that this new area has brought 

to economics, it also represents a demanding challenge for the applied 

researcher. In fact, those who deem nonlinearities an important 

characteristic of economic time series still face a most difficult task 

of modeling these nonlinearities. Such modeling involves choosing from 

many possible alternatives, while only a few (if any) rules exist for 

choosing between models. Furthermore, linear models have a strong 

theoretical support. Indeed, the Wold Decomposition Theorem states that 

every covariance stationary process can be expressed as an infinite 

order moving average process.

This simple observation implies that, from a practical point 

of view, nonlinear modeling is a costly task. Meanwhile, nonlinear 

models might represent more parsimoniously parameterized models of a 

given time series, with significant improvements in forecasting 

abilities. Thus, the simplicity and generality of linear models 

strongly suggests the need for tests that are indeed capable of telling 

a researcher whether or not linear models capture all the dynamics of 

the series under study. This dissertation is motivated by that simple
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fact and its purpose is to study the issue of nonlinearity testing. 

Therefore, and in order to proceed, we first define the concept of 

linearity that we are utilizing.

2. PRELIMINARIES

2.1 Linear processes.

To motivate the definition of linear process we first 

introduce the so-called Wold Decomposition Theorem. This fundamental 

result states that any zero-mean weakly (covariance) stationary process 

{Yt} can be represented as the sum of an infinite order moving average 

—  MA(oo)) —  process and a purely deterministic process (where purely 

deterministic means a process with zero variance). In formal terms:

Wold Decomposition Theorem:

2Let {Ut) be a zero mean, constant variance (cr >0) white noise sequence 

and {Vt) a deterministic process, with E[UtVs]=0 for all s,t e Z, where 

Z is the set of integers. The weakly stationary zero mean process Y 

can be expressed as
CO

y = y 0 u + vt u  t-j tJ = o
where:

00

1 ) 0 = 1  and £ 02< oo 
° l=o J

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



www.manaraa.com

4

2) U e M for each t 6 Z, where M =sp{Y ,-co < t £ n} is thet t n t

closed span of {Y , <  t £ n}, a subset of the Hilbert

space M=sp{Y^, t e 2}.

3) V e M for each t e Zt -a>

Proof:

See Brockwell and Davis (1987), p. 180, Theorem 5.7.1.

Most of the traditional time series analysis deals with

purely non-deterministic models. For this class of models, the above
CO

decomposition is now stated as Y = £ 0 U . From the perspective that
1 j= o  1 t -J

Y can be obtained as a linear combination of past and present 

innovations it could be said that Y is a linear process. However, the 

Wold decomposition result guarantees that we may express every weakly 

purely deterministic stationary process in this form. Therefore, any 

meaningful (testable) definition of linearity must impose some 

additional structure (stronger than white noise) on the stochastic 

properties of {U }.

Brock and Potter (1991) defined two major categories for 

linear processes. Following their work, and restricting attention to 

purely non-deterministic processes, we say that a process is iid-linear 

if:
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Definition 1. (IID-linear)

If {Ut), in the Wold decomposition result, forms an iid (independent 

and identically distributed) sequence, then {Yt> is iid-linear.

Similarly, we define mds-linearity as:

Definition 2. (MDS-linear)

If {Ut}, in the Wold decomposition result, forms an mds (martingale 

difference sequence), then {Yt) is mds-linear.

A martingale difference sequence is defined as follows:

Definition 3. (White (1984), p. 56)

Let {^t,^ }” be an adapted stochastic sequence, that is, is a 

random scalar measurable with respect to an increasing sequence of

(r-algebras 5 . {1^,9^} is an mds if and only if 11~0> f°r aH

t—2.

We are interested in linear processes that have

autoregressive moving averages —  ARMA(p,q) —  representations, 

p(L)yt=8(L)Ut> where L is the lag operator and p(L) and 9(L) are,

respectively, p-th order and q-th order lag polynomials. To this
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effect, we further assume that the sequence {tp } in the Wold
p kdecomposition is absolutely summable, and that p(z) = 1+ £ p^z * 0 for

k=l
p .

all Izlsl, 0(z) s 1+ V e z * 0 for alllzUl, and p(z) and 6(z) have noi i  ^  k 1 1
k=l

common factors. This guarantees that the ARMA(p,q) process is causal 

and invertible —  see Brockwell and Davis (1987), Theorems 3.1.1 and 

3.1.2.

To shed some light on the difference between the concepts of 

iid-linearity and mds-linearity, recall that for a zero mean process, 

iid => E[U |!? i]=0 =* EflMJ ]=0, V t^s.1 The concept of iid-linearity 

can be motivated by analogy with a regression framework. If the goal is 

to establish the "best" relationship between two variables, y and x, 

then one is looking for a function f(x) such that y^-ftx^ forms a zero 

mean, independent sequence. If this is the case, it means that the 

model does not leave any structure to "explain". This dissertation 

concentrates on the issue of iid-linearity testing.

However, it is perhaps more natural to define stochastic 

linearity as the case where the best linear predictor coincides with 

the minimum mean square error predictor of Y conditional on ? —

i.e., E[Y I? ], where SF is the cr-algebra generated by Y , mst.L t 1 t-iJ t-i o o  m

This is equivalent to the condition that E[U |!F a.s., for every

t —  Hall and Heyde (1980, p. 183).

Evidently, many possible cases exist when iid-linearity and 

mds-linearity do not coincide. One such case occurs when 

E[U^|?t t]̂ =E[Û ]. Note that this case is not ruled out by the Wold
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2decomposition, which only guarantees that E[Ut] is constant across 

time. However, the mds-linearity concept is compatible with this 

difference between conditional and unconditional higher (than the 

first) order moments. For example, an autoregressive process with ARCH 

errors is mds-linear but not iid-linear. This is a simple consequence 

of the fact that under iid every measurable function of U should be 

uncorrelated with any measurable function of the past Ut’s, while the 

mds null implies only that U is uncorrelated with any function h of 

the past U^’s, such that E|h(.)U | < w.

At the same time, it must be noticed that if {Yt) is a 

Gaussian process, the existence of nonlinearities is ruled out by the 

fact that the {Ut) in the Wold decomposition will be an uncorrelated 

Gaussian sequence (and therefore iid).

2.2 Nonlinearities and Heavy-Tailed Distributions

It has long been claimed that normality is not a suitable 

distributional assumption for some economic time series —  especially 

for financial data. As a matter of fact, it is usually accepted that 

the distributions of series like stock market returns and exchange 

rates have heavy tails, as compared with those of normal distributions. 

Such distributions are said to be leptokurtic. In particular, it is 

known that the existence of moments for a given distribution relates 

closely to the rate of decay of the distribution’s tails. Therefore, 

for heavy-tailed distributions higher order moments may not exist at
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all.

That moment condition failure is an important issue in 

economics is documented in literature following Mandelbrot’s (1963) 

work. Mandelbrot gave some evidence that unconditional second moments 

might not exist for commodity price changes. More recently, Loretan and 

Phillips (1992) presented estimates of the maximal moment exponent, 

a = s u p q > o { E l U l q<oo} , for some financial time series, concluding that, 

frequently, 2«x<4, i.e., while second moments of this data seem to be 

finite, fourth order (unconditional) moments do not. Furthermore, rates 

of foreign exchange price changes also seem to suffer from fourth 

moment condition failure —  see Loretan (1991). On the basis of these 

estimates, then fourth moments are generally not finite, strongly 

indicating that the data are not Gaussian.

It is important to note that a considerable portion of

nonlinearity testing and modeling has dealt primarily with the

above-mentioned type of economic data. This raises a question, namely, 

how much are nonlinearity tests robust to the nonexistence of 

higher-order moments.

The statistical implications of this problem can be 

illustrated simply using the Central Limit Theorem for the sample mean. 

The simplest version of this theorem (due to Lindeberg and Levy, c.f. 

White (1984), Theorem 5.2) —  covering the iid case —  requires the 

distribution function of the data to have finite variance. If this is

not the case, central limit results remain available for the so-called

stable distributions, but conventional asymptotic approximations that
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apply the usual theorem (i.e., Gaussian Central Limit Theorem) lack any 

theoretical support in such cases.

More generally, the usual test methodology derives the large 

sample properties of some statistic on the assumption that the 

hypothesis to be tested is true. To derive the limiting distribution of 

that statistic, a central limit theorem must be invoked. Central limit 

theorems usually require two sets of conditions, namely on serial 

dependence among observations and on moment conditions (as a way to 

control the outlier activity). If one such set of conditions is not 

satisfied the assumed limiting distribution will not follow and the 

associated asymptotic approximation will become invalid.

3. COMPARISON OF MOMENT-REQUIREMENTS OF NONLINEARITY TESTS

We now present a survey of the moment conditions required by 

some widely-used tests for nonlinearity and temporal dependence. This 

investigation is motivated by the fact that moment condition failure 

frequently is a feature of some economic time series, especially 

financial time series, whereas many tests of nonlinearity make strong 

assumptions about the existence of moments. We do not aim to explain in 

detail how these tests work, or to discuss their small-sample 

properties (for such discussion see Tong (1990) and Granger and 

Terasvirta (1992). Instead, the topic is testing for linearity under 

weak moment conditions.
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3.1 Bispectrum-Based Tests

Subba Rao and Gabr (1980) have proposed a frequency domain

test for the null of linearity based on the fact that if a series has a
3linear representation —  with E[Ut]< oo —  then the ratio

|f(w ) |2
Y = ------- l-— I------

f ) f ) f ( a ^ + W j )

is constant, that is, it does not depend on the frequencies —  and 

—  used. Here, f(w) and fCo^.o^) are, respectively, the spectral 

density and the bispectral density function. In particular, if the 

process Y is Gaussian, the above ratio is zero.

This test, as well as the modification proposed by Hinich 

(1982), requires the existence of finite sixth moments of Y , as Subba 

Rao and Gabr (1980, p.147) explicitly acknowledge. This requirement 

reflects the fact that to establish the limiting distribution of the 

test statistic, one must guarantee that the bispectrum estimates are 

asymptotic normal. As stated in Theorem 2 in Van Ness (1966), the 

asymptotic normality of the bispectrum estimates is established under 

the hypothesis that {Y } has finite unconditional sixth moments.

It is important to stress that the bispectrum based tests are 

directly applied to the series We now turn our attention to

tests that are performed on estimated residuals of a linear process.
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3.2 The McLeod and Li test

This test is based on the fact that if {Yt} is a stationary 

Gaussian time series, then

Corr(Y2,Y2 ) =Corr(Y ,Y )2, V kt t-k t t-k

where corr(.,.) is the correlation coefficient. Any departures from the 

above result might indicate nonlinearity. McLeod and Li (1983) showed
m

the portmanteau statistic Q=T(T+2) £ r /(T-k) as asymptotically
k = 1

2
distributed x (m) under the assumption that {Yfc} is an ARMA(p,q) 

process with independent and identically distributed innovations. Here, 

rfc is the sample autocorrelation of the squared fitted residuals of an 

ARMA(p,q) model. This asymptotic result is valid under the existence of 

finite eighth moment of U —  see McLeod and Li, p. 271.

3.3 Tests of Linearity Based on Volterra Expansions

Volterra series expansions acknowledge that Y can be 

expressed as a function of past and present innovations —  

Y =h(U ,U ,U ,...) —  and that the function h is sufficientlyt t t-i t-2
well-behaved so that it can be expanded in a Taylor series about the 

origin —  see Priestley (1988).

Keenan (1985) proposed a test of linearity against a 

second-order Volterra series expansion of Y . The test is based on runs
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an auxiliary regression which augments the linear model under test with

the quadratic terms of the dependent variable. The resulting test

statistic is asymptotically distributed F and is similar to Tukey’s one

degree of freedom test. Tsay’s (1986) generalization of Keenan’s test,

however, has proved to have better small sample properties. Basically,
2both tests test whether including terms such as Y helps improve 

the linear model’s forecasting power. Both tests require the existence 

of finite fourth moments —  see Tsay (1986), Theorem 1.

3.4 Lagrange Multiplier Tests

alternative in mind. However, some linearity tests were constructed to 

have power against some specific departures from linearity. This class 

of tests, the Lagrange multiplier tests (score tests), are additionally 

useful because they require only estimation of the model under the 

null, that is, they demand no nonlinear estimation procedures when the 

null hypothesis is true.

tests for the null hypothesis of linearity against two particular 

alternatives, the bilinear model

The tests presented above were derived without a specific

Saikkonen and Luukkonen (1988) developed Lagrange multiplier

m k
I r u y^  ij t-J t-ij=l

and the exponential autoregressive model,
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The limiting chisquare distributions for the test statistics proposed 

in that paper are derived under the assumption that fourth and sixth 

moments are finite, respectively.

Luukkonen, Saikkonen and Terasvirta (1988b) considered an LM 

test for another class of nonlinear models, the so-called smooth 

transition autoregressive model,

p p p
y + f p y * (0 + V 0 y )F(r T v y -c)=U ,
J t L‘ ̂ r t - i  v 0 L‘ i t-i-' v u  l t-1 J t1 = 1 1 =1 1 =1

where y>0, and if i=d, and zero otherwise, d is a generally

unknown delay parameter, and F is a function to some smoothing

conditions. To derive the limiting distribution of the test statistic,

the authors assume the residual process {Ut) has finite fourth moments.

It is worth noting that both Keenan’s and Tsay’s tests may be 

derived as Lagrange multiplier tests for some particular alternatives 

—  see Saikkonen and Luukkonen, (1988, p. 59). Moreover, the McLeod and 

Li test is asymptotically equivalent to an LM test of linearity when 

the alternative is an ARCH model —  see Luukkonen, Saikkonen and 

Terasvirta (1988a).
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3.5 The RESET Test

The Regression Error Specification Test (RESET) proposed by

Ramsey (1969) —  as well as the extension proposed by Thursby and

Schmidt (1977) —  is one of the most widely used tests of model 

misspecification.

Suppose, without loss of generality, that we are interested 

in testing that y is a first-order autoregressive process. The RESET 

procedure amounts to considering the augmented model yt=Pyt ^  0^t+ ^ 

—  where Z is a set of auxiliary regressors —  and testing the 

hypothesis that 0=0. As Z is usually unknown a priori, one must
A2 3̂ pchoose some test variables. Ramsey suggests using Zt={

where y are the OLS predicted values for y . Meanwhile Thursby andt t
Schmidt consider powers of y itself and their simulation study 

gave evidence that their test variables enhance the power of Ramsey’s 

test. Finally, the results also indicate that p=4 is usually a sensible 

choice for size and power considerations.

The procedures described above amount to running the 

auxiliary regression yt=Pyt 1+ U for a given choice of Ẑ .

Meanwhile, the moment conditions required to derive the asymptotic 

distribution of the RESET-type tests depend upon the conditions 

required to establish the asymptotic normality of the estimators of 

that regression’s parameters. Clearly, for Z ={ y^,y^,...,y^ } at 

least 2p moments must be finite, as is the case with Ramsey’s set of 

variables. In particular, choosing p=4 implies that finite eighth

R eproduced  with perm ission o f the copyright ow ner. Further reproduction prohibited w ithout perm ission.



www.manaraa.com

15

moments are required. This conclusion is supported by the fact that for 

p=2 the RESET test is asymptotically equivalent to Tsay’s test. For 

this and some further considerations regarding this family of tests, 

see Granger and Terasvirta (1992).

3.6 Neural Network Test

Using the theory of neural networks, Lee, White and Granger 

(1989) proposed a test of nonlinearity. First, it is important to 

stress that their concept of linearity is that of linearity in mean 

with respect to the information set generated by Z . In other words, 

their null hypothesis is characterized by

Pr{E[Y |Zt]=Zt'0}=l for some 0 e (Rk

Therefore, their concept of linearity lies within our 

definition of mds-linearity. Consequently, any measurable function of 

Z is uncorrelated with U =Y -Z ’0. The neural network test utilizest t t t
a particular test function h(.), usually a cumulative distribution 

function. Lee, White and Granger (1989) chose the logistic 

distribution. The moment conditions required to establish the test’s 

asymptotic distribution can be inferred from the fact that Granger and 

Terasvirta (1992) show that the test can be interpreted as based on a 

cubic Volterra expansion. Therefore, finite sixth moments should be 

required.
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It should be noticed that the mds-linearity null hypothesis 

is defined as a conditional moment test, E[U I? The law of

iterated expectations implies that E[U h(!? 1)]=0, for any function h 

depending on the past, provided that E|Uth(l? 1)|<00- That is, a 

conditional moment test implies that the process Ut must be 

uncorrelated with an infinite number of functions of the past. 

Therefore, it is clear that, in general, tests based on a finite number 

of unconditional moment conditions, as with the neural network tests, 

will not be consistent against every departure from the null. In this 

context, the tests proposed by Bierens (1990) assume particular 

relevance.

Bierens proposed as test function exp(s’$(Zt)) , where 

s e IR and $ is an arbitrary Borel measurable bounded one-to-one
k kmapping from IR to IR For our purposes, this test is attractive

mainly because it allows us to construct a consistent test of

linearity, based on a single moment condition. However, as Bierens
2presented results for a regression setup only, we will not pursue its 

analysis in this paper. However, note that in his regression framework 

Bierens must impose only that second moments are finite.

3.7 Robinson’s entropy-based test

Robinson (1991) proposes a consistent test of independence 

based on the nonparametric estimation of the Kullback-Leibler 

information criterion,
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I ( f , g ) = J f ( x ) l o g { f ( x ) / g ( x ) > d x

To use this to test nonlinearity, we face the following two 

problems. First, it should be applied to the residuals of some linear 

model. However, while Robinson asserts it possible to extend his 

results to this situation, it is as yet unknown whether some distortion 

in the asymptotic behavior of that test statistic is in fact introduced 

when employing estimated residuals. Second, as Robinson (1991) notes, 

very strong assumptions are made to derive the test’s asymptotic 

properties: the distribution of the errors must have a density function 

with compact support and bounded away from zero. As mentioned by the 

author, these requirements are far from corresponding to minimal 

sufficient conditions; in fact, they imply that all moments are finite 

and are extremely unlikely to be satisfied by real data. We do not know 

the degree to which these assumptions can be weakened.

3.8 Autocorrelation-Function Based Tests

This section concerns the testing of the so-called "random 

walk" behavior of stock returns. The (geometric) random walk hypothesis 

can be summarized as
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where Rfc=ln P , P is the stock price at time t, and {U^} forms a 

martingale difference sequence (MDS).

The tests for market efficiency summarized below can all be 

expressed as functions of the autocorrelation function of R̂ . The first 

such test is directly derived from the idea that the serial correlation 

of returns is a U-shaped function of the holding period. Richardson 

(1988) considers method of moments estimation of a testing approach 

first suggested by Fama and French (1988), and regresses multiperiod 

returns on lagged multiperiod returns. The test’s large-sample 

distribution assumes that fourth moments are finite.

Another approach to this problem is known as the variance 

ratio test. Lo and MacKinlay (1988) derived this test’s asymptotic 

distribution with finite 4+5 (5>0) moments of the error term.

Finally, Durlauf (1991) constructed Cramer Von-Mises and 

Kolmogorov-Smirnov statistics from the autocorrelation function of the 

returns. Durlauf imposes the condition that the return process has 

finite eighth moments. It is worth noting that despite this strong 

requirement regarding moments, Durlauf’s tests are consistent against 

all stationary departures from the null.

This review of some of the better known tests of temporal 

dependence and linearity indicates that these tests generally make 

strong assumptions about the existence of unconditional moments of the 

series under study. From our perspective, care must be taken when 

applying these tests to many economic time series. As already noted,
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there is some evidence that financial time series and exchange rates 

are examples of such series. Therefore, inferences are suspect when 

obtained by applying one of these tests to such types of data.

Chapter 2 introduces a family of tests that is robust to the 

nonexistence of moments. The null hypothesis of these tests will be 

that the data under test is iid-linear. Consequently, when applying 

those statistics to the test of the market-efficiency hypothesis one 

will too often reject the null of interest. Once again, this is a 

consequence of the fact that the iid-linear null is a stronger concept 

than the mds-linear one.

4. SIMULATIONS

In the previous section we discussed the moment conditions 

required to establish the asymptotic behavior of some popular 

nonlinearity tests. We saw that at least fourth moments are required to 

be finite in most cases. It is not unrealistic, then, to expect that 

the size and power of some of these tests will be significantly 

affected when applying the tests to data which do not possess finite 

fourth moments. Confronted with this fact, it is natural to 

investigate how the nonfulfillment of moment conditions affects the 

behavior of these tests. Ultimately, we aim to assess how misleading 

any inferences based on such tests can be when used for those economic 

time series that do not satisfy the moment requirements of the 

applicable central limit theorems.
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For all tests it must be understood that the moment 

conditions stated in the previous section, while sufficient, are not 

necessary to establish their asymptotic properties. It is often 

difficult to determine minimal sufficient conditions. We therefore rely 

on a simulation study to determine the behavior of these tests when the 

associated moment conditions are not satisfied. This section provides 

some Monte Carlo experiments regarding the behavior of various 

nonlinearity tests under moment condition failure.

4.1 The McLeod-Li Test

We showed above that if {Ut) has finite eighth moments, the 

McLeod-Li portmanteau test is asymptotically chisquared distributed. To 

assess the test’s robustness when using data that violate this 

condition, we need to generate test data with infinite eighth moments. 

To this effect, we generated iid symmetric sequences {Û } from the 

Pareto family of distributions, which satisfy

P(U>x)= i(x+l)'“ x>0

P(U<-x)=i(x+l)'a x>0

for different values of a, the maximal moment exponent of U.

The simulations described below were constructed in order to 

better understand the consequences of using the asymptotic chisquared 

distribution as an approximation to the actual distribution of the test
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even when the generated data do not satisfy the moment conditions 

required by the applicable central limit theorem. It should be noted 

that when the data is generated from some specific family of 

distributions it is still possible to establish the asymptotic 

behavior of the McLeod-Li test when fourth moments, for example, are 

not finite.

To this purpose, assume for the moment that we observe data

from a symmetric stable distribution (c.f. Ibramigov and Linnik (1971))
3with maximal moment exponent a (0sa^2). We know from the theory of 

sample averages for linear processes with infinite variance that for an 

iid sequence {Ut} generated from this family of distributions, the 

asymptotic distribution of the sample autocorrelations p(h), h=l,2 ,..., 

is of the form

(T/ln (T) )1/a(p(h)-p (h)) =s> W/V

where W and V are independent stable distributions with characteristic 

exponents a and a/2, respectively —  see Brockwell and Davis, (1987, 

pp. 482-484). It is important to note that not only we do not have 

convergence to a normal distribution but also that the rate of
~1 /OLconvergence to the limiting random variable is 0 ([T/ln(T)] ),p

faster than the usual 0 (T 1/2). As 0 ([T/ln(T)] 1/a)=o (T 1/̂ ), |3>ap p p
1 /2  ~(and a^2), it follows that T (p(h)-p(h)) converges to zero in

probability, except when a=2. (Note that when a=2, the corresponding

stable distribution is a normal distribution)
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The McLeod-Li test deals with sample autocorrelations for the
2 2 squared process {Ut}. Now, if U has Paretian tails with a<4, Ut lies

in the normal domain of attraction of a stable distribution with stable

exponent a/2. Therefore, results available for the sample

autocorrelations are also applicable to the sample autocorrelations of

the squares.

We considered several values for a as well as Ut~iidN(0,l) 

(that is, a=oo). and consider this last case for comparison purposes. 

Loretan (1991) describes the algorithm used to generate the symmetric 

iid sequences. See also the references provided there. We fixed T=1000 

as our sample size and considered 1000 replications of each experiment.

Table 1.1 provides evidence that the non-existence of moments 

considerably affects the size of the McLeod-Li statistic. For both 

choices of the number of autocorrelations considered ( q=20 and q=40), 

this relationship is revealed in two ways. We note the difference 

between the nominal sizes of a chisquare distribution with 20 and 40 

degrees of freedom) and also the fact that the Kolmogorov-Smirnov (KS) 

statistics strongly reject the null that the empirical distributions
4are chisquare. On the other hand, when the simulated data are normally 

distributed ( a=co ) and q=20 , the KS statistic clearly indicates that 

the null of chi-square distribution cannot be rejected (the p-value is 

approximately 0.49 ). Somewhat surprisingly, according to our

experiments, when q=40 not even the normal data lead one to accept 

that the distribution of McLeod-Li test is chisquared. It is important 

to bear in mind that even though we are dealing with asymptotic
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Table 1.1: Size experiments on the McLeod-Li test

q=20

(1) a = i . 5 a = 2 a=3 a=4 a = 6 0=8 a=co

0. 100 0. 073 0. 087 0 . 102 0.116 0. 120 0.119 0. 099
0. 050 0. 061 0. 078 0 . 083 0. 100 0. 095 0. 089 0.047
0. 025 0. 056 0. 074 0 . 071 0. 092 0. 072 0. 070 0. 031
0. 010 0 . 049 0. 064 0 . 064 0. 079 0. 052 0. 056 0. Oil
0. 005 0. 047 0. 058 0. 057 0. 071 0. 045 0.04 4 0. 004
HEAN 7. 951 9. 958 12.18 15.11 15.91 17.38 20. 20
VAR 602, 4 547. 2 407. 2 409. 3 1 9 4.7 1 49. 9 41.69
KS 25. 95 23. 90 19. 98 16.51 12. 82 9. 454 0. 827

(1) Rows 1 through 5 give the empirical sizes of tests whose nominal
size is given by column (1), under the assumption that the test
statistic is asymptotically chi-squared distributed with q degrees of
freedom. The last three rows report the values of the sample mean
(MEAN), the sample variance (VAR), and the value of the
Kolmogorov-Smirnov (KS) statistic for the null hypothesis that the

2empirical distribution is Sample size: 1000

Table 1.1a: Size experiments on the 
McLeod-Li test with q=40

II o

(1 ) a=3 a = 6 a=co

0. 100 0.1 1 9 0 . 1 4 6 0. 129
0. 050 0. 104 0 . 1 1 8 0. 075
0. 025 0. 093 0. 089 0 .041
0 . 0 1 0 0. 081 0. 070 0. 020
0. 005 0. 077 0 . 0 5 9 0 . 0 1 0
M E A N 26. 92 33. 91 41 . 53
V AR 1047. 4 4 5 . 7 86.61
KS 1 9 .15 1 1 .60 2. 501

(1) See Table 1.1. T=1000
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approximations our sample size is 1000. We may expect that for samples 

of this size the asymptotic distribution would give a close 

approximation to the tests’ actual distribution. Note that the error in 

the size estimates due to simulation has mean 0 and standard error 

given by Jp7l-p)/R, where p is nominal size and R is number of 

replications. Table 1.2 reports the values of these standard errors.

Table 1.2: Standard Errors for Size Estimates

Nora i n a 1 
Sizes

0. 100 O. 050 0. 025 0. 010 0.005

S.E. 0 . 0 0 9 5 0.0069 0.0049 0.0031 0.0022

S.E. reports the standard errors associated with each 
estimate of the tests size, as given by -lp(l-p)/R where p 
is nominal size and R is number of replications.

A reassuring pattern of the results is that as a increases,

the empirical distribution of the tests approaches a chisquare

distribution. This is evident because the means of the tests increase

towards their theoretical values (20 and 40) and the dispersion of

the tests becomes substantially smaller. At the same time, the KS

statistic seems to be a decreasing function of a.

We can obtain a complementary perspective regarding these

facts by plotting the estimated densities of the tests’ statistics for

the different values of a. Density estimates for lntC )̂ —  where Q is

the value of the McLeod-Li statistic —  were formed using the
t— 1 —1nonparametric kernel estimator, f (u)=T T h K((u-ln(Q ))/h ). We

h n I nn i = 1
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used the Gaussian kernel K(x)=exp(-x2/2)/Vitr. The bandwidth selection
A -1/5 Awas h =cr T , where o* is the standard deviation of Q. We used then

logarithmic transformation for because for small values of a many

observations are near zero. The transformed variable has support on

(-00,+00). In this way we avoid boundary problems - see Silverman (1986,

Section 2.10). We obtained densities estimates for the original data by

a change of variable.

It is clear from Figure 1.1 that for small values of a a

strong concentration of the densities occurs around zero. This is

particularly evident for values of a less than four. The analysis of

the densities’ plots suggests that for these values of a, the density

of the tests has a pole at zero. This seems to have a simple

explanation, especially if we put this observation together with the

analysis, (provided previously in this chapter) of the asymptotic

behavior of the McLeod-Li test with data generated by distributions

that are in the normal domain of attraction of a stable distribution.
2For a<4, the squared series U are in the domain of attraction of the

stable distributions. Using the analysis on rates of convergence for

the sample autocorrelations described on pp. 21-2 2, and the fact that

the McLeod-Li is a function of sample autocorrelations of the squared

series, it seems clear that the McLeod-Li statistic is o (1) for valuesp
of a less than four. The pole at the origin suggested by Figure 1.1 

confirms this argument.

At the same time, Figure 1.1 also displays the occurrence of

too many large values (by comparison with the corresponding chisquare
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distribution) for the test statistic. We note that this last 

observation casts some doubt on whether it is appropriate to use the 

chisquared distribution to approximate the upper tail of the empirical 

distribution. Using the chisquare critical values when moment 

conditions are not satisfied, would lead us to reject the null 

hypothesis too often, at least at the conventional 5'/ and 1% levels. We 

also note the slowly decaying upper tails of the tests’ empirical 

distributions.

Although a sample size of 1000 seems large enough to 

guarantee that asymptotic results provide a good approximation, we 

decided to run the same set of experiments with T=2000. The results are 

summarized on Table 1.3 and do not show any significant departures from 

the results obtained with T=1000 —  see also Table 1.3a in the Appendix 

to this chapter for the case q=40.

Table 1.3: Size experiments on the McLeod-Li test

q = 20

(1) a=i. 5 a = 2 a=3 a=4 a = 6 a = 8 a=co

0. 100 0. 049 0. 068 0. 087 0.111 0. 127 0 . 123 0 . 0 8 8
O. 050 0. 044 0. 063 0. 073 0. 094 0. 102 0 . 096 0. 048
0. 025 0. 044 0. 054 0 . 062 0. 083 0.091 0. 077 0. 024
0. 010 0. 039 0. 051 0 . 054 0. 077 0. 071 0. 059 0 . 0 1 2
0. 005 0. 039 0. 049 0. 050 0. 072 0. 060 0. 053 0. 006
HEAN 7.025 8. 530 12.04 14. 62 16. 68 17.74 19. 87
VAR 1002. 658. 7 609. 8 379. 7 212.0 197. 6 40. 29
KS 27. 62 25. 57 20. 80 17. 17 12. 23 9 . 797 0. 647

(1) - See Table 1.1. Sample Size: 2000

The fact that the empirical sizes of the tests are, in most
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cases, above their nominal sizes deserves some further comments. As

Section 3.4 states, the McLeod-Li test is asymptotically equivalent to
2the Lagrange multiplier (TR test) test of iid against ARCH residuals. 

The simulation results presented in Tables 1.1 and 1.3 clearly indicate 

that, for series such that 2^a^8, the McLeod-Li test is an example of a 

"liberal" test, because the null hypothesis is rejected too often. In 

other words, the alternative that the errors are ARCH will be accepted 

too often. This simple fact implies that when testing for ARCH

disturbances in applied work one may reject the null of iid not because 

the errors follow an ARCH process, but simply because the iid driving 

process is characterized by nonexistence of finite low-order moments.

However, this conclusion may depend upon the sample size. In 

order to assess the impact of moment condition failure on the behavior 

of the test at different sample sizes, we run the same set of

experiments for sample sizes 50, 100, 200, 500, 750, 1000 and 2000. 

Figure 1.2 plots the empirical size of the 1% McLeod-Li test for

different values of a. As expected, with normal data the empirical size 

is always very close to the nominal size. However, for all other values 

of a a pattern emerges. When the sample is small (50, 100) the

empirical size of the tests is below the nominal size, with the

opposite happening when the sample size increases.

Figure 1.3 displays the results for the same experiment

relative to the 5% size test. Although the same pattern seems to

emerge, we note that for large sample sizes the difference between the 

nominal and empirical sizes is smaller than such differences for the l’A
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size test. In this last case, for values of a other than » and sample 

sizes above or equal to 500 observations we find between four and eight 

times more rejections of the null of iid than we should expect.

4.1.1 Robustifying the McLeod-Li test by means of a transformation of 

the data

One possible way of making a test robust against moment 

condition failure is by "trimming" the data, that is, by transforming 

the data such that:

Ut if |UJ=K

1 [ sgn(Ut)K if |U |>K

where sgn(x)=l if x>0, -1 if x<0 and 0 otherwise, and K is a given 

constant. In practice, one may set K according to some data-based 

rule. In what follows, K is an estimate of the inter-quartile range, 

?3/4-?1/4> where ^=inf{x:F(x)^p} is the pth quantile of the 

distribution function F of U .t
The idea behind this transformation is that if two variables 

are independent then any transformation of the two variables still 

produces two independent variables. In particular, 0 is generated by a 

distribution with finite support, and consequently has finite moments 

of every order. Therefore, if the null is iid, this transformation 

seems like an easy fix for the problem of moment condition failure.
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Table 1.4: Size experiments on the McLeod-Li test 
with transformed data

(1) a = i . 5 a = 2 a = 3 a = 4 a = 8 a=oo

0. 1 0 0 0. 0 9 9 0 . 1 1 4 0. 1 0 5 0 . 1 0 9 0. 1 0 2 0 . 1 1 0
0. 0 5 0 0. 0 5 3 0 . 0 5 4 0. 0 5 2 0. 0 5 9 0. 0 4 7 0 . 0 5 4
0. 0 2 5 0. 0 3 1 0. 0 3 4 0. 0 3 0 0. 0 2 8 0. 0 2 7 0. 0 2 2
0 . 0 1 0 0. 0 1 4 0 . 0 1 5 0. 0 0 8 0. 0 2 0 0 . 0 1 2 0 . 0 1 2
0. 0 0 5 0. 0 0 7 0. 0 0 6 0. 0 0 5 0 . 0 1 2 0 . 0 0 7 0. 0 0 7
M E A N 1 9 . 9 20. 1 20. 2 20. 1 1 9 . 8 1 9 . 8
V A R 41 . 5 4 4 . 4 4 1 . 6 44. 3 41 . 2 4 1 . 4
KS 0. 7 4 7 0 . 9 1 4 0. 7 5 7 0. 6 9 2 1 . 1 8 0. 9 2 0

(1) See notes for Table 1.1

As a matter of fact, the simulations reported in Table 1.4 

indicate that by applying the McLeod-Li test to Ut instead of Ut one 

might expect to obtain the right sizes. However, the gain in size 

properties comes at the cost of reduced power against non-iid 

alternatives. The simple experiments reported in Table 1.5 indicate 

that the test’s power properties are considerably weakened by this 

transformation. This effect is particularly strong for small values of 

the ARCH(l) parameter <j> (see Table 1.5), where the test with the 

transformed data has problems distinguishing that series from an iid 

series. This is not surprising, because by cutting off some of the 

data’s variation we loose significant information about the series when 

the alternative hypothesis is true. Indeed, we see no reasons to 

believe that this transformation guarantees that the corresponding LM ^ 

test will keep its asymptotically optimal properties.
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Table 1.5: Power of the McLeod-Li test

i i ~ W 
*©
■ 

I 
11 2

(2)
<t>=

(1)
4
(2)

<t>=
(1)

6
(2)

T = 200 
IX test 
5% test

0. 084 
0. 186

0. 176 
0. 290

0. 260 
0. 427

0 . 5 1 0  
0. 623

0. 576 
0. 730

0 . 7 1 7  
0. 813

T = 500 
1Y. test 
5% test

0. 135 
0. 281

0 . 4 4 6  
0. 583

0. 700 
0. 830

0. 935 
0. 972

0. 976 
0. 989

0. 984 
0. 992

T = 1000 
IV. test 
5% test

0. 341 
0. 546

0. 825 
0. 924

0. 972 
0. 991

1 . 00 
1 . 00

1 . 00 
1 . 00

0. 999 
1 . 00

The data was generated by an ARCH(l) model U =h Z , where 
2 2ht=u+0Ut and iidN(0,l). Column (1) corresponds to 
the values of the test for the transformed data Ut;
(2 ) reports the values of the test for the series U

Furthermore, this test is usually applied to estimated

residuals. Suppose now that the null of iid-linearity is true (the

innovation process forms an iid sequence). In this case, the estimation 

process implies that the estimated residuals do not form an iid

sequence, even though it should be expected that as the sample size

increases the behavior of the estimated residuals’ behavior more

closely resembles that for an iid series. However, no theoretical 

statistical results likely exist to guarantee that applying the

trimming transformation to estimated residuals will not affect the 

limiting distribution of the McLeod-Li test.
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4.2 The RESET test

Section 3.5 showed that this test for misspecification 

requires the existence of 2p finite moments, where p is the order of 

the polynomial approximation to the unknown regression function. Here 

we consider the following experiment: we generate stationary AR(1)

processes, yt=pyfc +U , |p|■< 1 , where Ut is an iid process whose

distribution is of the Pareto-Levy form, for the following set of 

values for a: a = {1.5,2,3,4,8 ,00} . For each of these six possible

values of a, the autoregressive coefficient takes three different

values, 0.05, 0.5 and 0.95. We considered two possible test variables.

First, as Ramsey (1969) suggested, we consider the OLS-predicted values 

—  y —  of the regression of yt on Yt We run the auxiliary

regression,

p ^,
U = /3 y + T p  y + v t r t-i L l i;t t

i =2

for two different values of p, 2 and 4. (Ut are the residuals of the 

OLS regression of y on y and v is an error term) The resultingt t”! t
tests are designated RAMSEY2 and RAMSEY4, respectively.

As a second choice test variable we follow Thursby and 

Schmidt (1977) and considered powers of the lagged endogenous variable 

yt . The auxiliary regression becomes
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p iU = /3y + £ (3 y + vt 1 r t-i u 1 r t-i ti =2

Again, we consider p=2 and p=4, and the corresponding test 

statistics are denominated THURSBY2 and THURSBY4.

Tables 1.6 and 1.7 present the results for RAMSEY2 and 

RAMSEY4, respectively, when the data generating process (DGP) is 

Yt=.9y We obtain the test statistic by computing

(£ U2 - I vf )/(p-D
RAMSEYp = --- ------ -------

E \  /(T-l-pl

Under the null of linearity, (p-l)RAMSEYp ~ x' , , provided that the
( P “ 1 )

moment conditions are satisfied.

The results provide some evidence that moment conditions are

important for the size of both statistics. Consider first the case of

p=2. For the simulations with a=8 and a=oo , the respective empirical

distributions display strong similarities with a chisquare distribution

with one degree of freedom. This similarity is well summarized by the

fact that the KS statistics do not reject the null that both tests

follow such a distribution (p-values for that test are approximately

0.1 and 0.81). However, for all other values of a, including a=4 , the

information in Table 1.6 seems to indicate that the asymptotic
2approximation provided by a ^ variable is rather poor.

We find the same poor showing for the RAMSEY4 test. In this 

case, however, even when the innovation process has finite eighth
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moments, the limiting chisquare distribution does not satisfactorily 

approximate the test’s sampling distribution. As in the McLeod-Li test, 

we find the dispersion of the results is smaller as a increases, 

while the KS statistic decreases as we approach the "critical" moment 

condition, 2p, from below.

In the Appendix, we include the results for the simulations 

when the autoregressive parameter is .5 and .05. The pattern of the 

results seems independent of the choice for p.

Table 1.6: Size experiments on RAMSEY2

DGP: y = .9y + U■’t Jt-i t

(1) L/)II a = 2 a = 3 a=4 COII3 (X=co

0. 100 0 . 053 0. 056 0. 082 0 . 081 0. 088 0. 117
0. 050 0 . 033 0. 039 0. 048 0. 047 0. 044 0. 058
0. 025 0. 024 0. 028 0. 028 0. 025 0. 024 0.031
0. 010 0. 020 0 . 0 1 8 0. 022 0 . 0 1 8 0. 006 0. 016
0. 005 0 . 0 1 7 0 . 0 1 7 0 . 016 0 . 0 1 2 0. 001 0.009
HEAN 0. 821 0. 737 0. 896 0. 935 0. 923 1 . 066
VAR 24. 28 5 .211 4. 421 3. 307 1.661 2. 621
KS 10. 02 7. 120 4. 223 2. 606 1 . 232 0. 646

(1) - See comment to Table 1.1

Tables 1.8 and 1.9 describe results obtained for THURSBY2 and 

THURSBY4 from the same set of experiments. As before, fourth and eighth 

moments appear critical in determining the asymptotic properties of 

these tests. Indeed, the pattern of results is identical to those 

observed for the RAMSEY2 and RAMSEY4 tests.
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Table 1.7: Size experiments on RAMSEY4
DGP: yt= . 9y

J t-i
+ u

t

(l) a = i . 5 a = 2 a = 3 a = 4 a = 8 a=oo

0. 100 
0. 0 5 0  
0. 0 2 5  
0. 0 1 0  
0. 0 0 5

0. 0 6 8  
0. 0 5 5  
0. 0 4 7  
0. 0 4 0  
0. 0 3 4

0. 0 7 0  
0. 0 4 8  
0. 0 3 6  
0. 0 2 7  
0. 0 2 5

0. 0 9 7  
0. 0 6 9  
0. 0 4 6  
0. 0 2 9  
0. 0 2 3

0. 0 9 0  
0. 0 5 4  
0. 0 3 8  
0. 0 3 2  
0. 0 2 6

0. 0 9 4  
0. 0 4 8  
0. 0 2 7  
0. 0 1 7  
0 . 0 1 2

0. 100 
0 . 0 6 1  
0 . 0 3 6  
0. 014 
0. 0 1 1

M E A N
V A R
KS

2. 6 0 3  
1 0 6 . 0  
14. 40

2. 4 2 7  
5 6 . 7 8  
1 1 . 0 1

3. 1 3 9  
1 8 8 . 5  
7. 2 4 8

2. 8 5 9  
19. 0 7  
5. 0 9 3

2. 7 8 9  
6. 9 7 8  
2. 6 3 6

3 . 0 4 3  
6. 952 
0 . 5 3 9

(1) See notes for Table 1. 1

Table 1.8: Size experiments on THURSBY2
DGP: y =  -9yt. + U

■1 t

(i) a = i . 5 a = 2 a = 3 a = 4 a=8 a=co

0. 1 0 0  
0. 0 5 0  
0 . 0 2 5  
0 . 0 1 0  
0 . 0 0 5

0. 0 5 3  
0. 0 3 3  
0. 0 2 4  
0. 0 2 0  
0 . 0 1 7

0. 0 5 6  
0. 0 3 9  
0. 0 2 8  
0 . 0 1 8  
0. 0 1 7

0. 0 8 2  
0. 0 4 8  
0. 0 2 8  
0. 0 2 2  
0 . 0 1 6

0. 081 
0. 0 4 7  
0. 0 2 5  
0 . 0 1 8  
0 . 0 1 2

0. 0 8 8  
0. 0 4 4  
0. 0 2 4  
0. 0 0 6  
0. 001

0 . 1 1 7  
0. 0 5 8  
0. 031 
0 . 0 1 6  
0. 0 0 9

MEAN
VAR
KS

0. 821 
24. 28 
1 0 . 0 2

0. 7 3 7  
5 . 2 1 1  
7. 1 2 0

0. 8 9 6  
4. 421 
4. 2 2 3

0. 9 3 5  
3. 3 0 7  
2. 6 0 6

0. 9 2 3  
1 . 6 6 1  
1 . 2 3 2

1 . 0 6 6  
2. 621 
0. 6 4 7

(1) See notes for Table 1. 1

Table 1.9: Size experiments on THURSBY4
DGP: y = . 9y + U4. J  4- 1t ' t - 1  t

(1) a = i . 5 a = 2 a = 3 IIts 00II a=oo

0. 1 0 0 0. 0 6 8 0. 0 7 0 0. 0 9 7 0. 0 9 0 0. 0 9 4 0. 100
0. 0 5 0 0. 0 5 5 0. 0 4 8 0. 0 6 9 0. 0 5 4 0 . 0 4 8 0. 061
0 . 0 2 5 0. 0 4 7 0. 0 3 6 0 . 0 4 6 0. 0 3 8 0. 0 2 7 0. 0 3 6
0. 0 1 0 0. 0 4 0 0. 0 2 7 0. 0 2 9 0. 0 3 2 0. 0 1 7 0. 0 1 4
0. 0 0 5 0. 0 3 4 0. 0 2 5 0. 0 2 3 0. 0 2 6 0 . 0 1 2 0 . 0 1 1
MEAN 2. 6 0 3 2. 4 2 7 3 . 1 3 9 2. 8 5 9 2. 7 8 9 3. 0 4 3
VAR 1 0 6 . 0 56. 78 1 8 8 . 5 19. 07 6. 9 7 8 6. 9 5 2
KS 14. 40 1 1 . 0 1 7. 2 4 8 5. 0 9 3 2. 636 0. 5 3 9

(1) See notes for Table 1.1
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5. SUMMARY

In this chapter we introduced this dissertation’s topic, 

namely, testing nonlinearities under moment condition failure. We first 

discussed two related linearity concepts. It is our perspective that 

nonlinearities have been usually detected in those economic time series 

that are suspect to satisfying only a few moment conditions; i.e., in 

those series with maximal moment exponents most likely less than four.

We discussed the type of moment conditions required by some 

of the most popular nonlinearity tests and found they all require at 

least finite fourth moments. We provided a simulation study of the

performance of the McLeod-Li and RESET tests to assess the impact on

the inferences made by using these tests when moment condition failure

is a problem. This study further suggests extreme care is needed when 

these tests are applied to data generated by heavy-tailed

distributions.

One comment about the distinction between heavy-tailed 

distributions and moment condition failure is in order. Heavy tails do 

not imply moment condition failure per se. Indeed, one can can always 

argue that economic data is generated by distributions with finite 

support, and that most of the distributional models used in applied 

research —  for example, the normal distribution —  are just convenient 

approximations to the true underlying models. In this context, we may 

imagine models with heavy-tailed distributions but finite support.
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Consequently, moments of every order would be finite.

If one believes that this is the true generating mechanism 

for economic time series (where heavy-tailed distributions do not 

coexist with moment condition failure), our concern with moment 

condition failure would seem misplaced. However, even if it is the 

case, it should be noticed that in our simulation study we have used 

pseudo-random numbers originated by a machine that obviously works with 

finite supports. That is, our randomly generated numbers all have 

moments of every order. From this perspective, we have essentially 

dealt with heavy-tailed distributions more than with moment condition 

failure. Therefore, it seems our analysis is more general than we first 

supposed.

Finally, it must be noted that we used Paretian tails type 

distributions to generate data characterized by moment condition 

failure. Our simulation findings that the McLeod-Li and the RESET tests 

are non-robust to the non-existence of moments may be closely related 

to the distributional model used. Even though we could have 

investigated the behavior of the tests under other types of 

heavy-tailed distributions, we confined our analysis to the Pareto type 

distributions. Such distributions provide a simple characterization of 

the moment condition failure and also seem to provide an adequate 

description of outlier activity present in economic data —  See Loretan 

and Phillips (1992).
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APPENDIX OF CHAPTER I: Simulation Results

Table 1.3b: Size experiments on the 
McLeod-Li test with q=40

q = 40

(1) <X=3 a = 6 a=oo

0. 100 0.141 0. 131 0. 104
0. 050 0. 124 0. 104 0. 049
0. 025 0 . 1 1 5 0. 082 0. 030
0 . 0 1 0 0 . 1 0 3 0. 069 0 . 0 1 3
0. 005 0. 093 0. 060 0. 008
ME A N 26. 55 34. 44 39. 85
VAR 1152. 657. 9 83. 54
KS 20. 33 12. 26 0 . 8 4 6

(1) See Table 1.3. T=2000

Table 1.10: Size experiments on RAMSEY2

D G P
y r

0 5 y
J t-1

+ e
t

(1) a = i . 5 CMII3 a = 3 a =4 a = 8 8IIa

0. 100 0. 035 0. 065 0. 065 0. 085 0. 096 0. 109
0. 050 0. 027 0. 046 0. 041 0. 048 0. 048 0. 051
0. 025 0. 020 0. 033 0. 022 0. 027 0. 028 0. 025
0. 010 0. 014 0. 021 0 . 0 1 5 0.011 0 . 0 1 7 0 . 0 1 3
0. 005 0. 009 0 . 0 1 4 0. Oil 0. 006 0 . 0 1 2 0. 009
MEAN 0 .611 0. 805 0. 862 0. 880 1 . 004 1 . 037
VAR 10.18 6. 323 3. 762 3. 824 3. 422 2 . 1 4 3
KS 9 . 799 6.491 3. 739 3. 190 1 . 252 1 . 174

(1) - The first five rows of this table give the 
empirical sizes of tests whose nominal size 
is given by column (1), under the assumption 
that the test statistic is asymptotically 
chi-squared distributed. Sample size: 1000
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Table 1.11: Size experiments on RAMSEY4
DGP: y = .05y + eJt-i t

(1) a = i . 5 a=2 a = 3 a= 4 a=8 8IIa
0.100 0. 052 0. 075 0. 081 0. 075 0.089 0.101
0.050 0. 044 0. 055 0. 055 0. 048 0.054 0. 053
0.025 0. 035 0. 042 0. 038 0. 032 0.032 0. 022
0.010 0. 030 0. 034 0. 028 0. 021 0. 018 0 . 0 1 2
0.005 0. 024 0. 031 0 . 025 0 . 0 1 6 0. 012 0. 003
MEAN 2 . 1 7 8 2. 894 2. 703 2. 583 2. 843 2. 949
VAR 106. 6 222. 3 23. 39 1 9 . 9 2 14. 37 5. 880
KS 14. 75 10.14 6. 278 5. 966 3. 063 0. 732

(1) See Table 1.10

Table 1.12: Size experiments on RAMSEY2
DGP *< 

1 
II . 

1

5y +Jt-1 e t

(1 ) a = i . 5 a=2 a=3 a=4 03II a=co

0. 100 0 . 058 0. 058 0 . 0 6 5 0. 068 0. 07 3 0. 074
0. 050 0. 032 0. 031 0. 027 0. 029 0.029 0. 031
0. 025 0. 021 0 . 017 0 . 0 1 8 0 . 0 1 7 0 . 01 2 0 . 013
0.010 0 . 0 1 0 0 . 013 0. 007 0. 007 0. 005 0. 007
0. 005 0 . 007 0.011 0. 005 0. 002 0.00 4 0. 006
MEAN 0 . 7 1 0 0. 821 0 . 7 9 8 0. 845 0. 845 0 . 803
VAR 3. 336 6. 669 2. 365 1 . 471 1 . 357 1 . 458
KS 5 . 8 1 6 4. 591 2. 963 1 . 594 1 . 525 2. 627

(1) See Table 1.10

Table 1.13: Size experiments on RAMSEY4

DGP: y = .5y + eJt-i t

(1 ) a = i . 5 a=2 a=3 Ct=4 II CD a=oo

0. 100 0. 069 0. 066 0. 080 0 . 1 1 3 0 . 1 1 7 0 . 099
0.025 0 . 0 4 4 0. 044 0 . 057 0. 073 0. 070 0.053
0.050 0. 036 0. 037 0 . 040 0. 048 0. 044 0. 031
0. 010 0. 025 0. 026 0. 026 0. 030 0. 027 0. 010
0. 005 0 . 0 1 9 0. 022 0 . 017 0 . 0 1 8 0 . 0 2 4 0 . 006
MEAN 2. 284 3. 200 2. 962 3 . 1 4 3 3. 239 2. 959
VAR 24. 98 149.2 42. 72 2 1 .12 11 .48 6. 970
KS 9. 502 7. 301 4 . 1 65 1 . 870 0 . 9 0 5 6 1 . 435

(1) See Table 1.10
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Table 1.14: Size experiments on THURSBY4
DGP: y = .05yt + E -1 t

(1) a = i . 5 a=2 a = 3 a =4 a=8 a=oo

0. 100 0. 035 0 . 065 0. 065 0. 085 0. 096 0. 109
0. 050 0. 027 0 . 046 0. 041 0. 048 0. 048 0. 051
0. 025 0. 020 0. 033 0. 022 0. 027 0. 028 0. 025
0. 010 0. 014 0. 021 0.0 1 5 0.011 0. 017 0. 013
0. 005 0. 009 0. 014 0.011 0. 006 0. 012 0. 009
MEA N 0 . 6 1 1 0  0.8051 0 . 8 6 2 3 0. 8804 1. 004 1 . 037
VAR 10.18 6. 323 3. 762 3. 824 3. 422 2. 143
KS 9. 799 6 . 491 3. 739 3. 190 1. 252 1 . 174

(1) See Table 1.10

Table 1.15: Size experiments on THURSBY4
DGP: y Jt

II o cn + E 
-1 t

(1 ) a = i . 5 a=2 a=3 a=4 a=8 a=oo

0. 100 0. 052 0. 075 0. 081 0. 075 0. 089 0.101
0. 050 0. 044 0. 055 0. 055 0. 048 0. 054 0. 053
0. 025 0. 035 0. 042 0. 038 0. 032 0. 032 0. 022
0. 010 0. 030 0. 034 0. 028 0. 021 0. 018 0. 012
0. 005 0. 024 0. 031 0. 025 0 . 0 1 6 0. 012 0. 003
MEAN 2. 178 2. 894 2. 703 2, 583 2. 843 2. 949
VAR 106. 6 222. 3 23. 39 19. 92 14. 37 5 . 880
KS 14. 75 10.14 6. 278 5. 966 3. 063 0. 732

(1) See Table 1.10

Table 1.16: Size experiments on THURSBY2

DGP: yJ t= -5yt. + E 1 t

(1) a = i . 5 a=2 a=3 a=4 CDIIa a=co

0. 100 0. 058 0. 0S8 0 . 0 6 5 0. 068 0. 073 0. 074
0. 050 0. 032 0.031 0. 027 0. 029 0. 029 0. 031
0. 025 0 . 021 0 . 017 0. 018 0 . 0 1 7 0. 012 0. 013
0. 010 0.0 1 0 0 . 013 0. 007 0. 007 0. 005 0. 007
0. 005 0. 007 0.011 0. 005 0. 002 0. 004 0. 006
ME A N 0 . 7 1 0 0.821 0 . 7 9 8 0. 845 0. 845 0. 809
VAR 3. 336 6. 669 2. 365 1 . 471 1. 357 1 . 458
KS 5 . 8 1 6 4.591 2. 963 1 . 594 1. 525 2. 627

(1) See Table 1.10
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Table 1.17: Size experiments on THURSBY4

DGP: y " -5yt- + e 1 t

(1) a=l . 5 a = 2 a =3 a =4 a= 8 a=oo

0 . 100 0. 069 0 . 066 0. 080 0 . 1 1 3 0. 117 0. 099
0. 050 0 . 044 0 . 0 4 4 0 . 057 0. 073 0. 070 0. 053
0. 025 0. 036 0. 037 0. 040 0. 048 0. 044 0. 031
0 . 010 0. 0 2 5 0. 026 0. 026 0. 030 0. 027 0 . 010
0. 005 0 . 0 1 9 0 . 022 0. 017 0 . 0 1 8 0. 024 0 . 006
M E A N 2. 284 3. 200 2. 962 3. 143 3. 239 2. 959
V A R 24. 98 149. 2 42. 72 21.12 11 . 48 6. 970
KS 9. 502 7. 301 4. 165 1 . 870 0. 906 1 . 435

(1) See Table 1.10
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Notes to Chapter 1.

* Strictly speaking, the definition of mds-linearity is not enough to 

guarantee that E[U U ]=0, as E[|U U |] might not be finite. However, 

the result goes through if we impose the condition that the second 

moment of is finite, for every t.

2 It seems that the results presented in that paper could be extended 

to a more general framework —  Bierens (2990), p. 1444.

3 We are using the same notation for the maximal moment exponent of a 

stable distributions and for the maximal moment exponent of the 

Paretian distribution used to generate data for our simulation study. 

This seemingly misleading notation is widely use in related literature.

4 The 10%, 5% and 1% critical values for the Kolmogorov-Smirnov test 

are, respectively, 1.22, 1.36 and 1.64.

^ The McLeod-Li test is asymptotically equivalent to the LM test of iid 

against the alternative hypothesis of existence of ARCH effects. See 

Section 3.4.
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CHAPTER 2: A FAMILY OF TESTS FOR THE HYPOTHESIS OF IID TIME SERIES

1. INTRODUCTION

The presence of nonlinear dependence in economic time series 

seems to be gaining widespread acceptance among economists, as is 

indicated by the increasing number of published works in this area. It 

is not difficult to determine why this acceptance is emerging. For 

example, if one considers forecasting, the ability to detect and 

determine the nature of the nonlinear dependence is an important step 

towards constructing more accurate forecasts.

Most work in this area of economics is essentially 

theoretical. One of the reasons for this state of affairs is that the 

detection of nonlinearities is not yet a completely answered question. 

In recent years, the economics and statistics literature have proposed 

numerous tests of nonlinearity. A particularly attractive approach, the 

so-called "BDS statistic", was introduced by Brock, Dechert and 

Scheinkman (1987). These authors developed statistical theory for the 

"correlation integral" of Grassberger/Procaccia/Takens (a measure of 

spatial nonlinear correlation) and used this theory to formulate a test 

of the null hypothesis of no dependence against a large class of 

alternatives. Brock, Hsieh and LeBaron (1991) provide a comprehensive 

review of the BDS test. It is worth noting that this test has good size
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and power characteristics in comparison with some other popular tests 

for independence.

The BDS test is among the few nonlinearity tests that cannot 

be interpreted as a score or Lagrange Multiplier (LM) test against a 

nonlinear alternative —  c.f. Granger and Terasvirta (1992). This 

simple fact suggests both advantages and disadvantages to using this 

test. On one hand, the BDS test is likely to have lower power against a 

particular alternative hypothesis than does the corresponding LM test, 

which is asymptotically optimal against that alternative (cf. Engle 

(1984)). On the other hand, given the large number of nonlinear time 

series models available to researchers, it is sometimes questionable 

why a particular alternative may be more interesting than others. 

Indeed, it seems to be current practice to choose one particular model 

over the others more on grounds of tractability than because of any 

theoretically based arguments for its use. Therefore, in nonlinear time 

series it seems highly desirable to have tests with good statistical 

performances across a large set of different alternatives. Moreover, as 

no statistically optimal properties are associated with the BDS test, 

it is reasonable to think that some transformations of this test might 

enhance its properties.

In this chapter we develop a family of tests for the iid 

hypothesis. These tests are based on simple functionals of the BDS 

statistic and, therefore, on the correlation integral. We stress that 

for non-Gaussian processes the absence of serial correlation does not 

imply independence. Thus, a researcher who merely looks at conventional
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testing tools —  such as the sample autocorrelation function of the

series —  might mistakenly fail to reject the null of iid when in fact

the data generating process is nonlinear and dependent.

The proposed tests parallel a test for independence defined

by Blum, Kiefer, and Rosenblatt (1961) (BKR hereafter). The BKR test is

a natural Cramer-Von Mises function test based on the empirical

distribution function. In its simplest form, the BKR test can be
r1 2represented as B = N (x) dF (x), where F (x) is the empiricalT  j T  T T

distribution function of a sample of size T from the bivariate process 

{X }={x ,x } and N (x) is the difference between the joint empirical
t 1 tr T

distribution function and the product of the marginal empirical
Tdistribution functions of {^ } • The BKR test appears to be a very

tough competitor against a multivariate form of the BDS test statistic 

—  see Baek (1988). Moreover, the Cramer-Von Mises-type tests are known 

to have good sampling performances for different kinds of null 

hypotheses. Durlauf’s (1991) recent work on testing the martingale 

hypothesis successfully applies of these types of tests in economics. 

So it seems natural to investigate the large sample behavior of a test 

closely related to B̂ , but where N̂ tx) is a functional of the BDS 

statistic and, therefore, of the sample correlation integral.

The BDS test is currently applied as a diagnostic test of the 

correctness of an empirical model specification. This is a consequence 

of the fact that no distortion on the asymptotic distribution of the 

test is introduced when applying the test to the estimated residuals of
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a wide class of models. In particular, the BDS test can be used as a 

linearity test. However, the theorem that establishes the insensitivity 

of the BDS test to the use of estimated residuals in place of the true

innovations, up to now, has only been proven on the basis of a smooth

approximation to the indicator kernel, *(x), the building block of the 

BDS statistic. —  see Brock and Dechert (1988) and Brock, Hsieh and 

LeBaron (1991).Therefore, the result of insensitivity to the use of 

estimated residuals is only valid for the approximation kernels, while 

no formal proof has been given for the indicator kernel. In the next 

chapter, we present such a proof for the BDS statistic itself and its 

extensions to the family of tests introduced here.

The BDS statistic does have some associated drawbacks. First, 

some known departures from iid exist for which the BDS statistic has no 

power. Dechert (1988) gives one such example. Therefore, the BDS test

is not consistent against all alternatives. Consequently, the more

general class of tests described in this chapter will also fail to 

provide a globally consistent test of iid. Furthermore, while the good 

size and power properties of the BDS statistic generally hold only in 

large samples, some related tests are less demanding regarding sample 

size.

However, it is also the purpose of this paper to present one 

situation where the BDS family of tests seems to have an undisputed 

advantage over rival tests: this family of tests requires only very

weak moment conditions in order to establish its asymptotic properties.

In the previous chapter, we presented some known results
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suggesting that most of the supposed nonlinear economic time series are 

also characterized by heavy-tailed distributions. Some recent studies 

—  cf. Loretan (1991) and Loretan and Phillips (1992) —  have found 

that exchange rate changes and stock market returns do not have finite 

fourth moments (although they seem to have finite variance). The brief 

survey of nonlinearity tests presented in Chapter 1 concluded that 

these tests are poorly suited for testing nonlinearities in data that 

suffer from moment condition failure.

As will be discussed later in this dissertation, the BDS test 

and the family of tests we describe in this paper are a natural testing 

device for time series where higher order moments cannot be assumed to 

exist. In particular, these tests may be useful when testing for market 

efficiency.

The family of nonlinearity tests that we introduce in this 

dissertation are presented in two steps. In this chapter, we present a 

family of tests for the null hypothesis that the data comes from an 

iid-process. In Chapter 3 we discuss how the test can be applied as a 

test for the null of iid-linearity. The remainder of this chapter is 

organized as follows. Section 2 presents some preliminary theory 

concerning the BDS test and a functional central limit theorem for 

U-statistics of absolutely regular processes due to Denker and Keller 

(1983). Section 3 develops our family of tests and discusses how to 

avoid the selection of two "nuisance" parameters in the BDS test. 

Finally, conclusions are presented. All the proofs to the results we 

present are found in the Appendix to this chapter.
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2. PRELIMINARIES

We start by describing the BDS test. The test is based on the

fact that, if <X > is an iid process, then g = gm , for all e>0 ,t £»m €, 1
m=l,2 ,..., where:

g s JimC€, m C t mT->co

C c , «  = T T T  J E

(1)

(2)

x = (x ,x   x  ;t t t+1 t+m-1 (3)

T is the sample size, ||.|| is the max-norm, and is the symmetric

indicator kernel with X£M  = 1 if |x|<e and 0 otherwise.

The BDS test is then derived from the following result:

Theorem 2.1 (Brock, Dechert and Scheinkman, 1987)

If {X } is iid, then
C -cm

V = /F — £ii_l*N(0,l) V e>0 , m=2,3. . .
C , m S

s is an estimate of the asymptotic standard deviation of
E ,m

•/r(C -C m ) under the null of iid. v e,m £,1J
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As mentioned before, there is no Lagrange Multiplier 

interpretation for the BDS test. This possibly leaves some room for 

improvements on this test.

The approach taken in this paper is motivated in part by the 

analogy that can be established between the BDS test and empirical 

distribution function, as they both build on indicator kernels. 

Therefore, we construct our family of tests by looking at the partial 

sums of the BDS test and by deriving the asymptotic properties of the 

empirical process that this construction generates. It might be 

expected that by looking at the whole path of this process (instead of 

only at its terminal point, as is done by the BDS statistic), the 

resulting family of tests will have high power in detecting local 

departures from iid.

The BDS statistic is a function of U-statistics. To determine 

convergence results for its partial sums we use a functional central 

limit theorem for U-statistics —  U —  due to Denker and KellerT

(1983). This result —  Theorem 2.3 below —  gives conditions under
y/j r

which the random elements g(r)~ — (^[Tr]-0)> re(0 >D> converge weakly

to the standard Wiener process.

In what follows let D[0,1] define the space of functions on 

[0 ,1 ] that are right-continuous and have left-hand limits (cadlag 

functions). Denker and Keller obtained asymptotic results for 

U-statistics for weakly dependent processes, namely, absolutely regular 

processes. This concept of memory dependence of a stochastic process is 

defined as
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Definition 2.3

is an absolutely regular process if

p(n)=sup E [sup{|P(A|^a)-P(A) | |Ae!?“ }] — » 0, V A e S',m  1 a + naClN

where the symbol ^  denotes the sigma algebra generated by 

{Xt | a^tsb}, (lsa^bsoo).

This definition is introduced because, even though we are

after a test of iid, there is an m-period overlap in the BDS statistic

for C . Therefore, the theory of U-statistics we use must allow for e,m
some kind of dependence in the {X^} process. Denker and Keller (1983) 

made the extension from the iid case to a broad class of processes that 

includes m-dependent processes. The absolutely regular form of 

dependence is sufficient for our purposes, because it includes the case 

of m-dependence. We note that while uniform mixing implies absolute 

regularity and absolute regularity implies strong mixing, this order 

cannot be reversed.

We will now reproduce Denker and Keller functional central 

limit theorem:
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Theorem 2.3 (Denker and Keller, 1982)

{X } is absolutely regular with coefficients (̂'n) satisfyingn n— 1

P(n)^'/^2+^^=0 (n 2+e) for some 5>0 and c<~,cr2*0, and2

t » “ ?,t =.E lh(xt  xt >l2+s<“l j l j
If h is a non-degenerate kernel, then the H [0,1]-valued random

functions £(r) = (Ur ,-0), (O^r^l), converge weakly in D[0,1]IH(T L T r j
to the standard Wiener process. (Here, [] denotes the integer part 

of its argument and

V i  -  ( I  r 1 e  h<xt  x t j ;l£ t <...<t S[Tr] 1 j
1 j

3. A FAMILY OF TESTS FOR IID

3.1 Functionals of the Correlation Integral

In order to present the first result of this paper, let 

V (r) denote the D[0,1]-valued random functions£, m

V (r)=^l [c - c" , ] (Osrsl) (4)e,m CT L [Tr] ,e,m [Tr] ,e,i Jm

Theorem 3.2 below establishes the weak, convergence of 

partial sums of the BDS statistic. The proof of the theorem uses the 

functional central limit theorem for U-statistics (Theorem 2.3) and a
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Taylor series expansion of V around c and c , where c =£ , in m 1 m
E[C ]. In order to determine uniform convergence of some of the terms£, m
in that expression, we need to use the following lemma on U-statistics:

Lemma 3.1

Let {X^} be an iid process with distribution function F.

Consider the parametric function 0=Ep[h(Xt .... X )] for some
t i j

kernel h=h(X,...,X ). L e t U = ( T ) _1 £ h(X ,...,X )
S  1 j T 1 i < t < . . . < t s r  i j

i j
2

be a U-statistic for 0 such that ^ sup > E[h(X ,...,X ) ]<oo.t ” 1 i • • < i t •—* 1 L t1 j 1 j
Then, V e>0,

Probi gajTk(Uk-0)22V/TeJ- — > 0, as T -> <»

The next theorem is the key result for constructing the 

family of tests for the null hypothesis of iid. It shows that the 

normalized partial sums of the statistic W(C ,C ) = C - (f'C)iD C ) 1 £ j m £ , 1

converge to a standard Wiener process.
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Theorem 3.2

If {^} is an iid process with distibution function F, then

a) V converges weakly to the standard Wiener process.C> m

b) <r2 = 4 { m(m-2)C2m"2 (K-C2 )+Kn'-C2m+
e,m m- 1

2 J] [C2 J(Km_J-C2m-2j) - rnC2m 2J(K-C2)] >
J = i

where

C= E[^c (Xt,Xg)]=|[F(x+e)-F(x+e)3dF(x)

K= E[* (X ,X )x (X ,X )] = f[F(x+c)-F(x-e)]2dF(x) e t s e s r j

From the properties of the standard Wiener process, it

follows immediately that Theorem 3.2 contains the BDS test, by fixing

r=l. This fact leads us to term the tests proposed in this paper as

"the BDS family of tests" because they include the BDS test itself.

It is important to notice that no moment conditions on {Xfc}

are imposed in order to derive Theorem 3.2. This is a simple

consequence of the fact that the correlation integral that the BDS test

is built upon is an indicator kernel. Therefore, the moment conditions

imposed by the functional central limit Theorem 2.2 on kernel h of the

U-statistic U ,T

 Xt )l2+6<ro ’i j i J

are automatically satisfied by the indicator kernel. It follows that 

this family of tests can be used to test the null of iid, regardless of

the existence of moments of any order for the series under scrutiny.
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A simple application of the continuous mapping theorem shows

that if we use a consistent estimate of <r, we can obtain a workable

version of Theorem 3.2. As <r is a continuous transformation of C and K, 

the result depends upon the existence of consistent estimates for these 

last two statistics. Brock, Dechert, Scheinkman and LeBaron (1991)

provide such estimates for C and K. Therefore, we have the following 

result:

Corollary 1 to Theorem 3.2:

Let s be a consistent estimator of c and let V denote theG, m G, m G, m

functional obtained from V substituting cr for s . Then V€,m C,m C,m C,m
converges weakly to the standard Wiener process.

Having proved that V converges to the standard Wiener
C } in f N

process, we are now ready to develop a set of tests for the null

hypothesis of iid. Setting

B (r)=V ( r ) - r V  (1)G,m G,m G,ra

we have that B (r) converges to B(r) , where B(r) is thee,m
Brownian Bridge on r e [0,1].

It is worth noting that Theorem 3.2 and the continuous

mapping theorem provide the basis for determining the asymptotic

behavior of a set of "goodness of fit" statistics. These widely used
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statistics are based on the empirical distribution function and have 

the further advantage of having well defined properties. Consequently, 

we have the following result:

Corollary 2 to Theorem 3.2:

(Cramer-von Mises statistic) B (r)2dr =* B(r)2dr
K c>m J0

(Anderson Darling statistic) f g*m dr => f B(r)
o t(l-t) o rCl-r
1 8~ (r)2 ^  B(r)2 .dr

(Kolmogorov-Smirnov statistic) s u d  |B (r)| => sup |B (r)|
&  O S r S l I  c,rn,N 1 O ^ r S l 1 C.m.N 1

(Kuiper statistic)

sup. |B (r)-B (s) I =* sup |B (r)-B (s)|
O ^ s . F ^ l 1 e,m, N C.ra.N 1 C,m,N C.m.N 1

For a description of the properties of these statistics, 

including tables of their limiting distributions, we refer the reader 

to Shorack and Wellner (1987).

3.2 The Choice of e and m.

A slightly different application of this type of empirical 

processes may be used to generate a BDS-based test that avoids the
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problem of selecting the parameters e and m . As a matter of fact, 

the BDS test is valid for every e and m , and no theoretical result 

is available to determine which values of e and m maximize the 

power of the test. Consequently, in empirical applications of the BDS 

test we commonly see values of the test reported for a grid of values 

of e and m . As one may expect, the different values sometimes lead 

to different conclusions, in finite samples, regarding the validity of 

the null hypothesis.

As a possible solution we may look at the D [0,1 ] process,
<f

G (e) = C (e) - C (e)m , where m is fixed and e e d={S ,0<S <S >.m m 1 1 2  1 2
We restrict our attention to the case where m is fixed and thus 

simplify the argument, while recognizing that the choice of e seems 

to be far more critical for size and power considerations than does the 

choice of m. In any event, as m takes only a countable number of 

values, we may easily generalize the argument to handle the case of 

non-fixed m.

The suggested procedure relies on the fact that G (e) willm
converge to a Gaussian process with covariance function given by 

T (e , e ) = lim T E[G (e )G (e )1. Proceeding informally, we have them 1 2 m 1 m 2T“*oo
standardized process G (e) = G (e)/s (e), where s (e) is the samplem m m m

*analog of <r (e)=ne,e) . Therefore, G (e) should converge weakly tom m
the unit variance Gaussian process S' (e) . Evidently, for each e,m
*G (e) is one particular realization of the BDS statistic. As a new testm

* *statistic, one could use G = sup G (e), or any of the statisticsm - mced
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described in corollary 2 to Theorem 3.2. This would have the attractive

property of not depending on the choice of e. Hansen (1991a)
■*

discusses a method to simulate the distribution of the statistic G .m

4. SUMMARY

This chapter presented a method for using correlation 

integrals to test whether or not a given time series is iid. The 

departure points were the BDS statistic and a theorem by Denker and 

Keller that guarantees the weak convergence of U-statistics to the 

standard Wiener process. Using this functional central limit theorem, 

along with some other results, it was possible to determine the 

large-sample behavior of some functionals of the BDS statistic. The 

next chapter shows how this family of tests can test for the null 

hypothesis of iid-linearity.
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APPENDIX OF CHAPTER 2

Proof of Lemma 3.1

Because U is a U-statistic, {U -0, ^ ^ is a reversek v t t'taj
martingale sequence - Serfling (1980). Hence reversing the order of the

indexing set (j t} we convert the above process into a forward

martingale. Because convex functions of martingales are submartingales 

and using Theorem 1 of Chow (1960) (i.e., the submartingale extension 

of Hajek-Renyi inequality) we obtain the result that for every t > j,

Probj mgx k(U -0)2*i/t cl < -i  jjE[(U -0)2]+ £ E[(Uk-0)2]} (A.l)
i ' e V r '  k=j+i J

The argument that leads to (A.l) comes from Miller and Sen

(1972). The rest of the proof of this proposition parallels the proof

of their Lemma 2.
2 -1It is also known that E[(U^-0) ] ̂  <pf £ , where <p «x> does

not depend on T (see Serfling(1980), p 183). Hence, the right-hand side

of (A.l) is bounded above by

— "— 0C E ~  } - ^-log T — > 0 , as t -xo a
c v 't  J V. k=j+l k J Vt
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Proof of Theorem 3.2:

Let W (C ,C ) = C -C m . A first order Taylor expansion of
£,m £,m £,1 £,m £,1

W (C ,C ) about (c ,c ) gives that£,m £,m £, 1 m 1

W (C ,C )=C -c -me m_1(C -c )- ^[m(m-l)c (C -c )1 
e,m £,m £, 1 £,m m 1 v £,1 V  2 [  £.1 lyJ

given that c =c m under H . ( c = c +A(C (e)-c ) , O^A^l ). 
6  m l  o 1 1 1,N i

Using Hoeffding’s (1948) projection method,

T T
W =| T (h ( X ra)-c ) - me ” _1 | I (h (X )-c )+R +R , +£,m, T T m t m 1 T ^ v 1 t l' £,m,T £,1,Tt=l t = 1 (A.2)

- - m(m-l ) cj(m-2 (c - c  y
v £ , 1 ,T

or, in a more compact notation,

w = f £ g ex'") + r  + R  + A£,m T  u  m t £,m £, 1 £,1

where:
m-1 .g (x“ )sh (Xm)-c -me (h (X ) —c )m t m t m 1 v 1 t 1

1 r 1 y * ( m - 2 ) ^  .2 
Ae,i - ' 2 m(m'1)c.

h;(X)=E [xc (X,Y)|X=x]
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Now consider the following functional:

„ ITrl
W = ~ -  V g (x”) + R + R + A , Osr<l (A.3)e,m, [Tr] T t4'1 m 1 e,m, Hr] e,l,[Tr] £,l,[Tr]

Therefore, for O^r^l,

V (r) = ^  r fW - EW 1 ^  r W =£,m,T 2O' C,m, [Tr] e,m, [Tr] 2O' £,m,[Tr]
(A.4)

_ V? r _2 tr-r] + V? r + /r r + Vr r
2(T T ^ J 8"1 t 2 <T £, m, [Tr ] 2cr £,l,[Tr] 2 O' £,l,[Nr]

By Theorem 2.2, the first term in (A.4) converges weakly in 

D [0,1] to the standard Wiener process. The maximal inequality of 

proposition 3b) in Denker and Keller (1983) shows that

pr{0*?i1r>̂  2'i<riR[Tr] i a 4 a

P r { o S ? S , [Trl lR [Tr] l - T - ^ O f T - ' ^ O o g  T ) 3 )

Vr r A« . . . . . i . £ > m,[Trj .So, it remains to prove that -------^ ----- goes to zero in

probability. To show that, we will first perform some operations on
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IVt rm(m-l) *(m-2)„_
— r ?  ci e, i, U p] — ci>

_ Vj rjn(m-l), *, .2
olril 2 0- I C 1 I  ̂ E, 1, [Tr]

Given that Cj=c + MCj-c ), 0=sA<l, and that 0 ^ ,  c^l.rn^ we have that
| <m 2)j £ j Therefore,

v't rmCm-1) , .2^
olVil 2^---- !CJ  E, 1, [Tr] ~ Ci> *

v't rm(m-l) ,2 „ /-. .2sup -- -̂----- (C - c ) = K sup vt r(C , - c )oir-Sl 2 O' V E, 1, [Tr] 1 O^rSl E,l,[Tr] 1

where K=— =---2o-

Therefore,

Pr{|s p 31,/T r(CE, i , [ „ | - c, )2a «K~'}  3

Pr{!SP3,[Trl(cc,.,nH -c.>22 «K'V7 } -> 0 ■ aB T ^ 0

by Lemma 3.1. Note that Lemma 3.1 can be applied here because, under 

the null, the process {X^j^is iid. This completes the proof of part 1 

of Theorem 3.2.

With respect to o- , one just has to notice that this isC , in

exactly the variance of the BDS statistic, by definition. □
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Notes to Chapter 2.

i The notation introduced here is designed to show that c is no longer 

fixed. Therefore, ^Me) represents the correlation integral for the 

embedding dimension m, represented elsewhere in this paper as .
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CHAPTER 3: A FAMILY OF NONLINEARiTY TESTS ROBUST TO HEAVY-TAILED 

DISTRIBUTED DATA

1. INTRODUCTION

Chapter 2 introduced a family of tests for the null 

hypothesis that a time series is iid. One interesting question regards 

just how much the asymptotic behavior of the tests is insensitive to 

using estimated residuals instead of the innovations. If such a 

property can be established these tests can serve as diagnostic tools 

for those models where the invariance property holds. Particularly, it 

will be shown that no distortion results from applying the tests using 

estimated residuals of linear models. This result can be used as a 

basis for constructing a linearity test. Throughout the rest of this 

dissertation we will adhere to the convention of designating the 

(unobserved) residuals as "innovations", reserving the term "residuals" 

for the estimated ones.

Chapter 1 presented two major definitions of linearity. In 

particular, iid-linear processes were defined as
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Definition 1 (Priestley (1988))

{Y^} is a stochastic iid-linear process if it can be written as

CO
Yt = E 0 .U = 0 (L)U , (1)

J = o

where U ~iid, E[U ]=0 and 0 =1, E <p2 < “ t L tJ o j

It will also be assumed that a linear process will have an 

ARMA representation. (See Chapter 1 for a discussion of the conditions 

under which that representation is possible.)

The linearity testing strategy proposed in this paper is as 

follows. First we fit a linear model, namely, a finite order ARMA 

process, to the data. Then, we apply one of the tests proposed in 

Chapter 2 to the residuals of this estimation procedure. Obviously, 

this testing strategy makes sense only if we can show that the noise 

induced by the estimation process does not change the limiting 

distribution of our tests.

Formally, the problem can be cast in the following terms. 

Consider the data generating process

y = F(Y ,b,U ) (2)t-i t

2where b is an unknown pxl vector of parameters, F is C ,

Y =(y ,y ,...) , and {U , the innovation process, is iid.t ■'t Jt-i 1 t/t=o
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Assuming that y and Ut are one-to-one, we can write

model (2) as U =G(Y ,b) . Now, let b be a /r-consistent estimator
t t T

of b, where by i^r-consistent estimation we mean that i/T(bT-b)=Op(1).

Then one can get the residuals U as G(Y ,b ) . Of course, even if 
e t,t  t T

{U } is iid, the estimation process imposes some noise on the {U }t t, T

process. However, because bT b, one might expect that, as T ro,

the sequence {Û  behaves like an iid series.

The problem of determining whether the family of tests

introduced in Chapter 2 is invariant to the use of residuals parallels

the problem of establishing the same property for the BDS statistic.

This question was extensively studied by Brock, Hsieh and LeBaron

(19913. In their book, an invariance property of the BDS statistic was

proved for a large class of models.

The standard approach to this type of question is based on an

application of the Mean Value Theorem. To illustrate this point, let

St(0 ) denote any statistic that depends upon some consistently

estimated parameter, 0. To show that the asymptotic distribution of

(0 ) is the same as the one corresponding to St(0 ) , we note that

the Mean Value Theorem guarantees that

Vt [s  (e ) -#x(© ) ]  = v?[s  ( e ) - n ( e ) ]  + / F ( e - e ) ’ 5 » S t U ) *
x=e

where p(A)=li/n E[S (A)] , when the actual value of the parameter is 0
T-*oo

and 0 is a point between 0 and 0. Slutsky’s Theorem and the
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asymptotic normality of 0 guarantee that St(0 ) and ST(0 ) are

asymptotically equivalent, provided that lim E |-S (JO # =0.
T"*oo Ldr T I A=0 -I

When applying this approach to the BDS statistic, one

immediately recognizes that the indicator kernel *e(x,y), which is the 

basis for the BDS statistic, is non-differentiable. Thus, strictly

speaking, the Mean Value Theorem cannot be applied. To circumvent this

problem, the two proofs of the nuisance parameter theorem provided in 

Brock, Hsieh and Lebaron (1990 utilize a continuous approximation to 

the non-smooth indicator kernel ^£(x,y) —  see also Brock and Dechert 

(1989). Although the validity of this approach is supported by 

extensive Monte Carlo experiments (also presented in the 

above-mentioned book), it remains desirable to provide a direct proof 

of the residuals’ invariance property.

Additionally, as our family of tests also builds on the

indicator kernel, it follows that any result concerning its invariance 

to the use of estimated residuals also faces the same problem. We deal 

with this problem by giving a two-step proof of the result that the 

tests introduced in chapter 2 are invariant to the use of estimated

residuals. First, we present a new direct proof of this result for the

BDS test. Second, we extend this finding to our general family of 

tests.

The proof of the first step is an extension of work by

Sukhatme (1958) and Randles (1982). These papers give a set of 

sufficient conditions for the behavior of non-smooth U- and 

L-statistics to be invariant to the use of estimated parameters.
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Basically, these authors prove that the expansion involved in the Mean 

Value Theorem remains valid if one can reverse the operations of 

differentiation and taking the limiting mean. Therefore, we must impose 

a smoothing condition on the expectation of the kernel on which a test 

statistic is based (e.g. the indicator kernel in the BDS case).

To address our problem, we first must consider some 

differences from the Sukhatme and Randles setups. Suppose we want to 

show that a test applied to the residuals of a model such as 

yt=G(Xt>0 ) + Ut .where {l>t} is iid, has the same limiting distribution 

as when applied to the true innovations. Our proof, as theirs, uses the 

concept of generalized residuals, ut(A) , defined as the difference 

between y and the function G when evaluated at a point A . That

is, u (A)=U + G(Xi,0)-G(Xi,A). In particular, we have that ut(0 )=Ut.

The models Randles investigates are defined by the fact that

the Xt variable in the G function presented above is nonstochastic,

so that u (A) and u (A) , i*j , are two independent randomi j
variables (although nonidentically distributed). In the present case, 

we concern ourselves with time series contexts mainly, where the

{u^(A)} process is temporally dependent. Therefore, Randles’ proof must 

be generalized to handle this framework, and as such we use the the 

concept of strong mixing processes as a working tool.

This use, unfortunately, has a major drawback. As we are 

primarily concerned with constructing a test of nonlinearity, we must 

apply our test to the residuals of a linear filter. It is now well 

established that not every linear process is strong mixing. Therefore,
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this approach imposes some constraints on the generality of our 

results. Nevertheless, the subset of linear processes that are strong 

mixing is still quite large and the strong mixing concept is widely 

used in econometrics. Moreover, the assumptions that we have to make 

are not much stronger than those Randles impose.

The remainder of this chapter is organized as follows. First, 

we state the result that extends Randles’ result to U-statistics with 

bounded kernels for data generated by a strong mixing process. We next 

apply this result to the BDS statistic under different data generating 

processes, as well as to the class of tests defined in Chapter 2. 

Finally, we provide a general discussion of the use of our family of 

tests as tests for the null of iid-linearity. It is shown that the 

moment requirements of our tests are minimal. This is corroborated by a 

small simulation study of the behavior of these tests for data 

generated by heavy-tailed distributions.

2. USING ESTIMATED RESIDUALS

2.1 U-statistics with Estimated Parameters

First, we need to define some notation.

Let S (0) be a U-statistic with 
T

given by h(u (0),...,u (6 )) < B and r (0 )I m T

Define

a bounded symmetric kernel, 

= E [h(u (0),...u (0))].1 m
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W(Uj (X) Uj (X)) =
1 ID

1 m 1 id

and let

E W(u (X] u (X)),
1 m

where £ denotes summation over the ( J combinations of kmj
distinct elements { j ...... j } from {1 T} . The kernel W1 m
represents the difference between the kernel h evaluated at two

different points, X and 0 , of the residual function, which is

defined below.

Tc establish the extension to Randles’ result we use the

following set of assumptions:

Assumption A1 (DGP):

yt = GtYt.1-9) + u t

where - {U > is iid and Y ={y . ,y ....y }
C  t, L *  1 L "  c  t - p

{y^} is a strong mixing process with mixing coefficients

that satisfy the summability condition
CO
E cc(k)1 / 2 < co
k=l

- G is a measurable function of Yt-i
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Define the Residual Function,

u (A) = y -GW ,A) = U + G(Y ,0) - G(Y ,X)
L U t  V»“ i 1

<=* U fc(A) = U t + G ^ Y ^ . e . A )

Note that

n  ufc(e) = ut

2 ) ut(0 ) = Û , the estimated residuals.

3) ut(A) is a (strong) mixing process of size y:

*G is a measurable function (it is the difference of two measurable 

functions). Now assume that Y is a finite-order vector (that is, p 

is finite). If {yt) is mixing such that the strong mixing coefficient 

a(T) is 0(T~^), for some y>0 then, using theorem 3.49 of White (1984, 

p. 47) we have that {ut(A)} is mixing such that a(T) is 0(Ty), for 

each A.

Assumption A2:

E sup |h(u (0 ),...,u (0 )) - h(u (0 ),...,u (0))| < Cd
0 e K(0,d) si 1 sm 1 si Sm

where is a constant and K(A,d)={Aie IRP: IIÂ -All̂ d} , d>0, 11.11 being

the max norm. That is, K(A,d) is the hypercube with center at A and 

side equal to 2d.
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Assumption A3:

lim E sup |h(u (0 ).... u (0 )) - h(u (0).... u (0))|2 = 0
d-»0 0 ^  K(0 ,d) si 1 sm 1 si sm

Note that by Lemma 2.6 of Randles (1982), our assumption A3 

is automatically satisfied because we use bounded kernels only. We 

further assume that V?-consistent estimation of 0 is possible.

Assumption A4 (Vr consistency):

V?(0-0)=O (1)p

The next result, Theorem 2.1, shows that under the set of 

assumptions 1-4, the limiting behavior of a bounded U-statistic with a 

non-differentiable kernel, is not changed when estimated parameters are 

present. As we show in the next section, this result can be used to 

prove the insensitivity of the asymptotic behavior of the BDS family of 

tests to the use of residuals from a large class of models.

Theorem 2. 1

Under Assumptions A1-A4, QT(0) = Vt [S (6)-tt(6)-St(0)+tt(0)]—£-»0.

Proof:

See Appendix A of Chapter 3.
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2.2 Application of Theorem 2.1 to the BDS Family of Tests

We now show that the asymptotic distributions of the BDS 

statistic and of the proposed family of tests are invariant to the use 

of residuals. As already mentioned, the method of proof applies 

directly to the non-smooth indicator kernel, and avoids using a 

continuous function approximation to that kernel.

We first restrict our attention to the BDS statistic. The 

results we want to show are ^

T1/2 [W(C*(e,m), C*(e, 1)) - W(C(e,m) ,C(e, 1))] 0 (3)

and

s (e,m) - s(c,m) 0. (4)

Concerning (3), trivial manipulations described in 

Proposition 3.2 of Appendix A show it sufficient to guarantee that 

V9[C*(m)-C(m)] 0 and that V?[C*( 1)-C(1)] 0. That is,

residuals do not distort the asymptotic distribution of the correlation 

integral at dimensions 1 and m.

Theorem 2.1 extends Randles’ result to the case where the 

data generating process obeys a strong mixing condition. We have 

imposed that the studied U-statistic must be bounded. This restriction 

simplifies the proof considerably and fits well within the BDS 

statistic’s framework, which builds on the indicator kernel. The proof
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of our result depends critically on assumptions A2 and A3. As 

already mentioned, Randles’ (1982) lemma 2 shows that, for bounded 

U-statistics, A2 is sufficient for A3. Therefore, in order to show 

the invariance to estimated residuals property of the BDS statistic, we 

must show that for a given model the correlation integral (at embedding 

dimensions 1 and m) satisfies A2.

To complete the proof of our result, we still have to show 

that the estimate of the asymptotic variance, s^c.m), is consistent 

for s(e,m) when using residuals instead of the true innovations. To
4 nshow that s (e,m)-s(e,m) 0 , it follows by continuity of s(e,m)

* Pon C and K that we need to prove that K ~K — > 0 and thatr  T T
*  D 2C -C — ) 0. As C is the V-statistic form of C(1) , it follows that we
r T

*must yet show that the difference between K and K isI ?
asymptotically negligible. Remember that

N N
K =T = ^ E  e E V V W X . . V

1 r=l s=l t=l

To attack this last problem, note that the kernel in Kt> 

y (X ,X )> (X ,X ), is not symmetric. We could easily transform it,
£ r s C s t

however, into a symmetric function (cf. Serfling (1980), p. 172), 

giving it a V-statistic form. We do not pursue such a procedure here,
* Pfor the sake of simplicity. To prove that ^ -K — * 0, we show

that the kernel on Kt satisfies A2. Therefore, the symmetric version 

of Kt will also satisfy that condition, and we can apply Theorem
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2.1. The next result establishes that K -K is o (1).
T T p

Lemma 2.2

If E sup 
A e K(6 ,d)

< Cd, then K -K -=-» 0
T T

Proof:

See Appendix A of Chapter 3.

This lemma implies that for all of the models such that the
♦ PBDS statistic satisfies (3), we have s (e,m)-s(e,m) -=-> 0, because in 

that case

sup |* (v Ĉ -),u (u (0 ),u (0 ))|
A e K(0,d) j j

£ Cd

This last result shows that the invariance property of the 

BDS test regarding using of estimated residuals depends primarily on 

whether assumption A.2 is satisfied. In Appendix B below, we present 

examples of models for which the BDS statistic satisfies that 

assumption. The models covered in that appendix are: linear

regressions, AR(p), MA(q), ARMA(p,q), some (smooth) nonlinear 

autoregressions and two models of changing conditional variance: the

ARCH model introduced by Engle (1982), and Nelson’s (1991) EGARCH 

model. To achieve this, we impose two additional assumptions,
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A5) The distribution function of the innovations U, F(.), is 

absolutely continuous and differentiable.

A6 ) f(.)=F’(.)£ M*, that is, the density function of U is bounded.

Note that previous work on these types of models has

suggested that the asymptotic distribution of the BDS statistic is not

invariant to residuals obtained from ARCH models, defined as

y =G(Y ,6)U , U ~iid. Brock and Potter (1991) suggest a way to t t—1 t t
circumvent this situation:

N =ln U 2 = In y 2 - In (G(Y ,0))2 ,t t Jt v t-i J

and apply the BDS test to N̂ . Under the null hypothesis that Ufc is 

iid, it follows that Nt is also iid. The invariance property of the 

BDS statistic for models of conditional heteroskedasticity (as 

developed in the Appendix B to this chapter) is applicable to this 

logarithmic transformation only.

Some comments are in order. Not much is known about the 

asymptotic properties of the estimators of conditional 

heteroskedasticity models. However, as it is assumed in the present 

work that these models have iid driving innovations, the resulting 

processes should be stationary and ergodic —  see Nelson (1990) and 

Bougerol and Picard (1992). In this context, it seems that our
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requirement that the parameters of the models must be i/T-consistently 

estimated is not too strict.

Furthermore, all the results presented in this section are 

valid when the generalized residuals form a strong mixing sequence. Not 

much is known about the memory decay for the models analyzed in this

section. For linear processes, although there are some known examples

of autoregressive models that are not strong mixing (see Andrews 

(1984)), Chanda (1974) and Gorodetskii (1978) have shown that an 

important class of linear processes is strong mixing. This class is 

defined by linear processes with innovations that have a bounded and 

continuous density function. General results for models with 

conditional heteroskedasticity are not yet available. Hansen (1991b) 

establishes conditions under which the GARCH(l.l) model is near epoch 

dependent, a concept closely related to the notion of mixing processes.

In any event, the fact that for all the models described 

above Assumption A2 is satisfied, gives a strong indication that the 

BDS statistic requires no correction in its asymptotic distribution 

when used in conjunction with estimated residuals. It is important to 

notice that we do not present a complete characterization of the set of 

models for which A.2 is satisfied. However, the above analysis seems to

indicate that A. 2 will be verified for models that admit a

representation where the error term enters the model additively.

The last result to be presented in this section of the paper 

extends the nuisance parameter property of the BDS statistic to the 

class of tests introduced in Chapter 2. To do so, we need to prove that
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Under A1-A5, sup |Q (A) | — 0
T,r

Proof:

See the Appendix A to Chapter 3.

Theorem 2.3 above shows that all the results proved in this 

chapter for the BDS statistic can be extended to the family of tests 

proposed in Chapter 2.

3. NONLINEARITY TESTING

The results presented in the previous section permit the use 

of our family of tests to examine the correction of some parametric 

models. More specifically, it was shown that the asymptotic behavior of 

those tests is invariant to the use of estimated residuals from a 

linear (ARMA) model. That is, this invariance property permits us to 

deliver the promised test of nonlinearity.

Furthermore, in Chapter 1 we discussed why most nonlinearity 

tests are poorly suited for testing nonlinearities in economic and
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financial time series. It was shown that some of these series do not 

have finite fourth moments, while all of the described nonlinearity 

tests required the existence of at least finite fourth moments. We now 

argue that our family of tests are appropriate for nonlinearity testing 

under moment condition failure. We base this claim on two types of 

arguments. First, we provide theoretically-based reasons. Second, we 

present a small simulation study.

3.1 Moment Conditions Required by the BDS Family of Tests

The BDS family of tests builds on the indicator kernel.

Consequently, the moment conditions required by the theory of 

U-statistics are directly concerned with a bounded random variable. 

Specifically, Denker and Keller (1983) derive (functional) central 

limit theorems for U-statistics under the assumption that the kernel of 

the statistic under consideration has finite 2+5 (6>0) moments. The

indicator kernel has finite moments of all orders. As a further

consequence, the limiting behavior of the BDS family of tests as a 

direct test of iid (when no estimation process is involved) is 

independent of the existence of moments of the series under analysis.

However, when using any of the BDS family tests to detect

nonlinearity, one must first remove the linear components in that

series. As already mentioned, this involves estimating an ARMA process. 

Moreover, the nuisance parameter property described in Section 2 of 

this chapter requires /F-consistent estimation of the ARMA parameters.
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That is, the moment conditions required by this family of tests are

those required by the estimation procedure of an ARMA process.

Brockwell and Davis (1987, Theorem 10.8.2) show that least squares

estimation of the ARMA parameters gives the desired result if the

variance of U is finite and if {Ut) is iid. This implies that we
2can test linearity requiring only that E Ut< <» by applying any of the 

tests in the BDS family. This "moment-free" property fits well into the 

results obtained by Loretan and Phillips (1992), who showed that 

although fourth moments do not seem to be finite for asset prices 

series, corresponding variances do appear to be finite.
3Furthermore, Hannan and Kanter (1977) showed that for the

least squares estimator —  p^, i=l,2 ,...,p —  of the parameters of a

finite order autoregressive process with iid innovations whose

distribution function is in the domain of attraction of a stable law of
* “l/yindex a e (0,2), we have that p-p =o (T ), for any y>a. This1 i p

implies that, for this kind of linear processes, least squares
1 /2estimators converge at a faster rate than the usual T rate.

Therefore, in what concerns the moment requirements of the BDS 

statistic, this shows that we can apply the BDS family of tests as a 

linearity test even when the innovations process do not have finite 

variance, —  or, for this matter, when the maximal moment exponent of 

the innovation process is a < 2 —  provided that the we are applying 

the test to the residuals of an autoregressive process whose innovation 

process follows a distribution that is in the normal domain of 

attraction of a stable law with index a e (0 ,2 ).
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3.2 Simulation Study

In the previous section we showed our family of tests to 

have minimal moments requirements. In order to assess the validity of 

the theoretical arguments used above, we run a small Monte Carlo study 

similar to that presented in Chapter 1. As before, we generated iid 

data from a symmetric Pareto distribution

P(U>x)=i(x+l)"“ x>0
*
P(U<-x)=i(x+ir“ x>0

for a=1.5, 2, 4 and 8 , <r=a> represents the case where Ut~iidN(0,1).

Note that E[Ut]=0, by construction. We fixed T=1000 as our sample size 

and considered 1000 replications of each experiment. Table 2.2 of 

Chapter 1 reports the simulation standard errors.

We present results of these simulations for two statistics

from the BDS family of tests: the BDS statistic itself and the

Cramer-Von Mises (CVM) type statistic B (r) dr (See Chapter 2). WeE , mo
also computed the Kolmogorov-Smirnov and Kuiper statistics but the 

results were not satisfactory. It appears that the maximum of the 

empirical process on which we base our statistics behaves too wildly 

for the asymptotic results to provide a good approximation. This 

suggests bootstrapping the distribution of these statistics.
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At the same time, the experiments we run with statistics 

based on integrals of the empirical process (CVM, Anderson and Darling, 

Mallows, and Watson type tests —  see Shorack and Wellner (1987) for a 

description of these statistics —  all seem to have good large sample 

properties. The results for this group of statistics were very similar 

so we simply report values concerning the CVM type test.

All the test statistics purposed in this dissertation depend 

on two nuisance parameters, e and m. In Chapter 2, we suggested a 

method that would avoid the choice of those two parameters. However, 

this method implies very high computational costs. Thus, we instead 

chose the parameters e and m according to the values previously found 

in other Monte Carlo studies —  c.f. Brock, Hsieh and LeBaron (1991) to 

maximize the power of the BDS statistic.

For this reason we compute our statistics for two different

sets of values of (e,m), namely, (e,m) = (o\2) and (e,m) = (1.25<r,2), where 

o' is the standard deviation of the series under test. The value of m 

was set equal to 2 in both experiments because the choice of m seems to

have little impact on the size and power of the BDS test.
4In general, the results reported in Tables 3.1 and 3.2 and 

in Figures 3.1 to 3.4 provide strong evidence that both tests perform 

well in testing those situations with moment condition failure. The BDS 

statistic’s empirical size of the is remarkably close to the nominal 

one in almost every case. The CVM test seems to produce empirical sizes 

which are slightly biased upwards. This is especially relevant in the 

case where a=1.5, where both statistics have some problems. Note that
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in these simulations we are directly testing the null of iid, as the 

data was generated with no linear components. In this case, both test 

statistics do not require the series under test to have finite moments 

of every order.

Table 3.1:

Size experiments on the BDS family of tests ( m=2, e=<r)

(1) a = i . s a = 2 R II a = 8 a=oo

0 . 1 0 0 BDS
CVM

0.111 
0. 159

0. 090 
0. 135

0. 109 
0 . 1 1 7

0.1 0 1
0 . 1 1 3

0 . 1 1 0
0 . 1 4 4

0. 050 BDS
CVM

0. 074 
0. 109

0. 061 
0. 073

0. 064 
0. 065

0. 058 
0. 063

0. 054 
0. 080

0. 025
BDS
CVM

0 . 047 
0 . 072

0. 037 
0 . 044

0. 032 
0. 036

0 . 0 3 1  
0. 034

0. 030 
0 . 0 4 4

0 . 0 1 0 EDS
CVM

0 . 026 
0 . 052

0 . 0 1 9
0 . 0 1 8

0 . 0 1 2
0 . 0 1 5

0 . 0 1 9
0.0 2 1

0 . 0 1 7
0 . 0 1 7

HEA N
BDS
CVM

0 .014 
0. 297

0 . 035 
0 . 204

0. 003 
0. 182

- 0 . 0 1 0
0.1 8 1

0. 002 
0. 209

VAR BDS
CVM

1 . 229 
2. 261

1 . 052 
0. 049

1 . 007 
0 . 0 2 5

1. 064 
0. 028

1 . 085 
0. 032

(1) - The first eight rows give the emprical sizes of the tests 
designated as BDS and CVM (Cramer-Von Mises statistic), whose 
nominal size is given by column (1). The two last rows report 
the values of the sample mean (MEAN), and the sample variance 
(VAR). Sample size: 1000.

One possible explanation for the reduced quality of the 

results when a=1.5 may lie on the choice of e. Indeed, for a=1.5 the 

generated series U comes from a distribution with infinite variance, 

so that o- is converging to infinity as T goes to infinity; a small
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Figure 3.1: E s t im a ted  Dens ity  of  th e
BDS Test (T= 1 000, c=cx, m = 2)

0.5

0.4

0.3

N (0 ,1)

0.2

0.0 -3 -2-4

Figure 3.2: E s t im a ted  D ens ity  of the
BDS Test (T=1000, e=1.25a, m  = 2)
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0.2
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Figure 3.3: E s t im a te d  Density  of the
Cram er—Von Mises Test
(T=1000, £ = cr, m  = 2)7
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Figure 3.4: E s t im a ted  Density  of the
C r a m er-V o n  Mises Test
(T= 1 000, £=1.25a, m  = 2)7
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S Acalculation shows that <r is 0 (T ) if ot<2. The large values ofp
o', in practice, when a<2 , will thus cause the same problems for both 

tests documented in our simulation experiment. This suggests that we 

could improve the size results when a=1.5 by choosing c in a different 

way. To do so, we could look at the interquartile range of the 

generated series. We decided not to run such an experiment because we 

are mainly interested in those series that do possess finite variance.

Table 3.2:

Size experiments on the BPS family of tests ( m=2, e=1.25o-)

(1) a = i . 5 a = 2 a=4 a = 8 a=co

0 . 1 0 0
B D S
C V M

0. 1 0 0  
0. 1 6 0

0. 106 
0. 144

0 . 091 
0 . 1 1 8

0. 083 
0. 121

0. 090 
0 . 150

0. 0 5 0
B D S
C V M

0. 0 7 0  
0. 1 0 5

0. 061 
0. 081

0 . 051 
0 . 068

0. 050 
0. 066

0 . 049 
0 . 078

0 . 0 2 5
B D S
C V M

0 . 0 4 8  
0. 0 6 9

0 . 035 
0. 050

0 . 026 
0 . 0 3 8

0. 023 
0. 038

0 . 024 
0 . 047

0 . 0 1 0
B D S
C V M

0. 0 3 3  
0. 0 5 2

0. 015 
0. 032

0. 00 8 
0 . 0 1 6

0. 012 
0. 019

0 . 012 
0 . 022

M E A N
B D S
C V M

- 0 . 0 5 9  
0. 2 3 7

0. 061 
0. 202

0 . 015 
0. 191

- 0 . 0 6 3  
0. 186

0 . 038 
0 . 209

V A R
B D S
C V M

1 . 0 6 5  
0. 1 9 5

1 . 049 
0. 037

0. 915 
0 . 029

0. 968 
0. 027

1 . 021 
0 . 029

(1) - See Table 3.1.

In general, results for the BDS statistic seem to be slightly 

better than those established for the CVM test. This is hardly 

surprising, as our choice of e and m was determined by the values of e 

and m that seemingly work better for the BDS statistic. We have no 

corresponding results available for the CVM test. This suggests that we
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should perform a more extensive Monte Carlo simulation of our test 

statistics, not only on the choice of e and m, but also in determining 

the power properties of these tests. We do not present such study at 

this point because the central purpose of our dissertation is to test 

nonlinearities under moment condition failure. This same motive lead us 

not to use estimated residuals in this simulations (After all, the 

nonlinear testing strategy chosen throughout this dissertation is based 

on testing iid on estimated residuals). It should be noted that the 

simulations presented in Chapter 1 were also concerned with the 

performance of nonlinearity tests on the true innovations and not on 

the estimated residuals.

4. CONCLUSIONS

The family of tests introduced in Chapter 2 has the property 

that its asymptotic distribution is invariant to whether one uses 

residuals or unobserved innovations. This result was proved under 

exactly the same set of hypotheses as was the BDS statistic’s nuisance 

parameter property. It is established by working directly with the 

non-smooth indicator kernel, and thus avoids the approximation 

approaches previously pursued for the BDS test. We extended results 

introduced in the statistics literature by Sukhatme (1958) and Randles 

(1982). It should be noticed that this method of proof could be easily 

generalized to the test statistic proposed by Baek (1988).

It is widely accepted that many economic and financial time
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series have thick tailed distribution functions. Recently, fourth 

moment condition failure has been documented in empirical work 

concerning stock market and exchange rates data. In this chapter, we 

proved that the BDS family of tests requires, at most, finite second 

moments of the series under study. This robustness to the nonexistence 

of finite higher order moments makes our family of tests particularly 

well-suited for testing nonlinearities in economic time series. This 

may be important, inter alia, in testing the efficient market 

hypothesis. In this case, however, we acknowledge that we may reject 

the null too often. Such an increased incidence reflects the fact that 

market efficiency implies only that the innovation sequence forms a 

martingale difference sequence (with respect to the past observable 

data) if the risk premium is time-invariant. In contrast, our family of 

tests are designed to test the more restrictive null of iid.

In this sense, the null hypothesis studied in this 

dissertation is too strong for economic and financial data. The null of 

mds-linearity seems more appropriate for these type of data. Moreover, 

from a purely statistical view point, the definition of mds-linear is 

also the more natural one. This is because mds-linearity implies that 

the best linear predictor of Y coincides with its best predictor, in a 

mean square error sense. However, consistent tests of the mds-linearity 

hypothesis are not easy to formulate. Further complications occur if 

one is concerned with tests that have minimal moment conditions 

requirements. We leave this topic for future research.
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APPENDIX A OF CHAPTER 3; Proofs

Proof of Theorem 2.1

The first part of this proof follows the same arguments used 

by Sukhatme (1958) and Randles (1982). Remember that QT(0) was 

constructed as a U-statistic that measures the difference of a given 

kernel evaluated at two points of the generalized residuals function.

Pr[|QT(6 )|>? ]=

Pr[|QT(0) |>£ ,0 e K(0,Bt) ] + Pr[ |QtCo ) |>C , 0 £ Kte.B̂ .) ] £

£ Pr[ sup|Q (A)| > £] + Pr[ 0 «£ K(0,B ) ], where K=K(0,B ).
AeK T T T

/r-consistency (Assumption A4) implies that the second term

in the last expression goes to zero. We must therefore prove that

Pr[sup|Q (A) j>C]— >0.
AeK

First, let S be the mesh size of a partition of the hypercube

K(0,d) and let N(S)=([i/5]+l)p be the number of hypercubes defined by

such a partition. Note that [x] denotes the greatest integer

contained in x. Also, let K ,K , . . .K . be some ordering of such
1 2  N ( S )

cubes so that U K n K(0 ,B ). Let 6+b /Vr denote the left handi i T 1

vertex of K .i
The proof’s next step consists in defining the following 

mutually exclusive sets,
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from which it follows that

Pr[sup|Q (A)| > £] = Pr[ U E l 
AeK î N(5)

Pr[ U  { E n  [(| Q (0+b /Vt) | > ?/2) U  (|Q^(0 +b /✓?) | * £/2 )]> 1 *
L i —N (5) 1 J

Pr[ U  |Q (6 +b /Vt) | > e/2] + Pr[ U  (E fl |Q_(e+b/Vt') [ < £/2 )]s
L i=£N (6) T J L i<N(5) J

Pr[ max |Q (0 +b/Vt) | > £/2] + V Pr[" sup |Q (A)-Q (0+b /Vt)| > ^/2j 
+ i£N(8) T 1 •* i^n(S) *- AgKi J

Concerning the first term in the last expression, we have

that

Var(Q (0+b /VT))=TfT) 2 E [T W(u (0+b/V?), u (0+b/V?) )]2=T i s s(Tr 2 ~T i W  s ss i  m

T( ; Y‘ E E  w5 E «,]
s 1

where

W = W(u (0+b/Vr) u (0+b/V?)), W =  W(u ( 0 + b / V 7 ) u (0+b/V?))
s s s 1 1  11 m 1 m

and b=b .1
The residuals process {ut(A)} is, as seen before, a strongc

mixing process of size O(T^), provided that {y^} is mixing of the
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same size. The indicator kernel is a measurable function of the

u (A)’s and thus h(u (A.) u (A)) defines a strong mixing
t S S1 m

sequence. Therefore, W is itself strong mixing with size 0(T )
S

and is s -measurable, as s <s <...<s . That is, in order to establish
m 1 2 m

the mixing properties of W we repeatedly apply White’s Theorem 3.49.
S

Moreover, as we restrict our attention to bounded kernels, W isS

bounded, say |W I < C, and by construction E[W ]=0. Using this and
1 S 1 1

the fact that W and W are s and 1 measurable, respectively,s 1 m m

we can apply Hall and Heyde’s (1980, p. 277) Corollary A.I.,

|E[WsWj] | £ 6C(E[W^])1/2a(|lm-sJ )1/2, (A. 5)

where a(m) is the strong mixing coefficient.

We want to show that E |Y YW W ] goes to zero. Using (A.5),
S 1s 1

E  [ E  E  W8Wx] s l l  6C(E[W^])1/2a(|lra-sJ )1/2
s i  si

Assume, without loss of generality, that s <1 . To prove our result,m m
T~1

we take into account that we have T ( * ) k) terms where 1 -s =k.u 'm-1' 'm-l' m mj =k+m-l
Therefore,

T-m r
E lE E wswi ]= I

k = 0
6C(E[W2 ])1/2a(| 1 -sm m

,1 /2
T-l
E  ( J ) (J_k)L‘ 'm-1 / 'm-1'j=k+m-l
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As E[W(e (Q+b/Vr),.. . ,e (0+b/Vi))] = 0 (1) uniformly In s, by A2 andS S
1 m

A3
T-ra

E IE E w W ]= o(T2m_1) I a(k)1/2S Is 1 k=o

Putting terms together,

Var(Q (9+b /Vt )) = TfT)'2 E[£ W £ WJ
T i 'Hr s 1s 1

ST( ) V m y
T-m

o Ct2”"1) £ «(k)1/2l = o(l)
k=0 -•

Therefore,Q (0+b /Vt ) 0. As only a finite number of i’s

exist, Pr max |Q (0+b /Vt)| > £/2 
i=SN(S)

0 .

II) We must still show that

y Prj sup |Q (A.)-Q (0+b /Vt) | > £/2| 
lsn(S) L xeK T T 1 -*

Once again, this expression includes a finite number of terms only. 

Consequently, we just need to prove that the term inside the summation 

operator goes to zero. Define
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H (K )=sup |W(u (X) u (A)) - WCu (0+b/V?) u (0+b//?))
j ‘ AeK jx Jm Ji mi

By A2 we have that E[H 0^)] * 2CS/i/t . Pick 6 so that 2C5 < ?/4.

Therefore, /rf T V 1? E[H (K )]< £/4 and 
v  "> 7  j  J i

Pr T sup |QT(A)-QT(0+bi/v/T) I £ £/2 < prp?( * )_1£ Hj (f^) > £/2 j s
 ̂A€K^ j

Pr[/F( I )"1E(Hj(K1)-E[Hj(Ki)])>?/4 *

Var |Vt ( * )"1I(Hj(K J-E^ (f̂  )])]/(C/4)2,

by Chebyschev’s inequality. We may now apply the same arguments invoked 

for the previous proof to show that this variance goes to zero: Ĥ CK̂ ) 

defines a strong mixing sequence. Thus, Hall and Heyde’s Corollary A2 

guarantees that the summability condition (Al) imposed on the mixing

coefficients is sufficient to establish our result. □

Proposition 2.1

If VT[C*(m)-C(m)] - A  0 and v7[C*(l)-C(l)] 0 then

V?[W(C*(e,m),C*(e,l))-W(C(e,m),C(e,l))] 0

Proof:

We start with a first order expansion of
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W(C*(e,m),C*(e,l))-W(C(e,m),C(e,l)).

That is, as Wtx.yJ^x-y”1, expanding W around (c^.c^, we have that

W(x,y) = c -cm+ (x-c ) - me m'1 (y-c )m l  m 1 1

where c is a point on the line segment between and y.

-» W(C(m),C(1)) = (C(m)-c ) - me "_1(C(l)-c )m l  1

=> W(C*(m),C*(l)) = (C*(m)-c ) - m3 m_1(C*(l)-c )m l  1

where c is a point on the line segment between ^  and C(l) and is a
*point on the line segment between c and C (13. Therefore, 

W(C*(m),C*(l))-W(C(m),C(l))=

(C*(m)-C(m)) + me m_1(C*(l )-c ) - mc^^CfD-c^ =

(C*(m)-C(m)) + me m"1(CS(l)-C(l)) +
1 (A.6 )

+ m(cim_1-cim”1 )(C* (1 )-ci)-m(cim"1-ci,”1)(C(l )-Ci)

where we obtain expression (A.6 ) by adding and subtracting to

W(C*(m),C*(l))-W(C(m),C(l)) the terms mc^'^Cd and

mc‘n_1(C(l)*-c ). l v
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We first consider the last two terms in (A. 6 ). It follows

from Theorem 1 in Denker and Keller (1983) that C(1) converges in

probability to c , provided that the indicator kernel is

non-degenerate. Therefore, because c is an intermediate point between

c and C(l), then c m *-c m 1 0. As \/t[C(1)-c ) is 0 (1), itl 1 1  L iy p

follows by the Slutsky theorem that

m(cim J-c “ 1)Vt [C(1)-c i)) 0.

To prove that m(c m 1_cim 1) (C (D-c^) 0 , assume that
—  m-1t/t[C (l)-C(l)) -£-> 0. This implies that the difference between c 

and c " 1 vanishes asymptotically. Therefore, if v't[C (m)-C(m)] also 

converges to zero we have proved the proposition. □

Proof of Lemma 2.2:

Let J (A)=* (u (A),u (A))* (u (A),u (A))-* (u (0),u (0))* (u (0),u (0))
C 6 1 s s C s t C r s C s t

By Proposition B.3 in the appendix B, we have that

sup |J (A)
A e K(0,d) e

sup \% (u (A) ,u (A))-;t (u (0),u (0)) I
v  « j \ ^ r s € r sA € K(0,d)

sup I* (u (A),u (A))-* (u (0),u (0))j
A e K(0 ,d) e s
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Therefore, this kernel satisfies A2. This means that Vt(Kt-Kt) -— » 0, 

proving the result.o

Proof of Theorem 2. 3

As sup |Qt (A]| = sup |Vt r UT (A)
O^rSl

sup
OiSrSl

V? E |W(x (A),... ,x (A3) j
r *? _ l J il<j < . . . < j <[Nr] 1

Vt E |W(x (A) x (A)) |
j 1 m

Under the assumptions of Theorem 2.1, we have that

sup |Q (A) I — > 0. 
ô r̂ i T’r
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APPENDIX B TO CHAPTER 3: Examples of Models for which the BDS Family

of Tests Satisfies Theorem 2.1

In what follows, define

)1 if |x-y|<e 

0 otherwise

Je(ui(A),uj(A))3^e(ui(A),uj(A))-̂ ;c(ui(0) ,^(0 )).

H (E (A),E (A))s* (E (A),E (A))-* (E.(0 ),E.(0 )), e l j e i j c i j

where

E (A)=(u (A) u (A)), so thati v i l+m ’ m
*£(E(X),E U))-n * (u (A).u (A)).

h=0

1. Linear Regression Model

Let y =X S + U ; X is a Ixp non-random vector, j3 is the pxl vector of 
1 i i i

coefficients, and U ~iid, with mean zero, i
=> u (A)=U + X O-A) i i i

Therefore, I (u (A),u (A)) = 1[|U-U +(X -X )(^-A)|<c]. It follows that 
G i j i J i j

sup | J (u (A),u (A))| =
A e KO.d) e 1 j
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sup |1[|U -U +(X -X )(p-X)|<e]-l[|U -U I<e]| =
X e K(f3,d) J

sup 11[ |x+a’(/3-X) | <e]-l[ |x| <s] |, where a=X -X and x=U -U .
X e K(0,d) J J

As shown in Proposition 1 of this appendix,

sup 11[|x+a’ (/3-X) |<e]-l[|x|<e]|
X e K(0,d)

1 if e-1a|d<|x|<e+1a Id 

0 otherwise

It then follows that

sup |J (u (X),u (X))|
X e K(/3,d) J

= F(e+d|a|’s)-F(e-d|a|’s)+F(-e+d|a|’s)-F(-e-d|a|’s) 

where F(.) is the distribution function of U^-U .

We use the mean value theorem along with assumption A6 , and 

find that F{e+d|a|’s)-F(e-d|a|’s) ^ 2dM |a|’s, that is,

F(e+d|a|’s)-F(E-dlal’s) s 2dM £ I-in in
h=l

Assuming that the X’s are bounded, we have that

sup |J (u (X ),u (X ))|
X e K(X,d) J

4dM,

so that A2 is satisfied. This proves that /r(C (l)-C(l)) — 0. Thus, 

we must simply prove that Vt'(C (m)-C(m)) — -̂>0. Assume, without loss of
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generality, that m=2 .

Let H (U (A),U (A))5 £ i j

where U (A)s(u (A),u (A)).

Ie(Ui(A),Uj(A)) =

1[|U -U +(X -X )0-A)l<c]l[|U -u +(X -x H/3-A)|<e] =11 i j i J 1 J Ll 1*1 j+1 i+1 j+1 1

l[|x+a’ C/3—A) | <c]l[ |y+b’ (p-A)|<e]

where a=X -X ,x=U -U ,b=X -X and y=U -Ul j i j i+i j+i i+l j+i

Therefore, as shown in Proposition 3 of this appendix,

sup |H (E (A),E (A))|
A e K(0,d) £ 1 J

i 4Kdl

This proves that V7(C*(m)-C(m)) 0. Therefore, in the framework of a

linear regression model the BDS statistic’s asymptotic behavior is 

invariant to the use of estimated residuals.

2. Nonlinear Regression

y =g(X ,/3)+U , X non random, U ~iid with zero mean.
y i 6  i i i i

u (A)=U + g(X ,0)-gCX ,A)
i i i i
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I (u (A),u (A)) = l[|U -U +g(XJ)-g(X i)-(g(X J)-g(X A ) ) | < e ]
C i J  1 j 1 i J J

Assume that gfX^.A) is continuously differentiable in a 

neighborhood of j3. Expand gfX^A) in a first-order Taylor series around

0 :

(x, A)=g(x,/3) + M ^ _ 1 (a-/3), A*e K(3,h)

Let A (x ,y) =-^ . Therefore,O A
Sg(X ,A*)

Ie(u (A),Uj(A)) = l[|U-Uj+  gi  (A-fJ) -
Sg(Xj(A ) 

dX -(A-3) |<e]=

1[|U-U+ (A(XitA*)-A(X ,A*))(A-3)|<e] = l[|x-a* (A-0)|<e] 

where x=U -U and a=A(X ,A ) —A(X , A ).l j j’ i
That is, we reduced the nonlinear regression case to the

simpler linear regression framework. Analogously to that case, we
3g(x,y) .impose conditions A5 and A6 , and that

Under this set of conditions, we have that
5A is uniformly bounded.

sup |J (u (A),u (A))|
A e K(3,d) £ 1 j

£ 4dM.

Furthermore, as the Taylor series expansion reduces the 

nonlinear regression model case to a linear framework, it immediately 

follows that
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sup |H (U (A),U(A))|
X € K(/3,d) E J

£ 4K d, l

with H (U (A),U (A)}I defined as before. Our invariance property result e i j 1
also holds under a nonlinear regression framework.

The two cases already considered covered non-stochastic 

regressors. Note that we could use Randles’ proof for the two examples 

above, since u^A) is independent of u^CA), i*j. We now extend our 

findings to DGPs of the type yt=G(Yt ,̂0 )+^.

3. AR(q)

q
y = V p y +U <=> y =p(L)y +U , {U } iid, EIU I < oo 

K rt-i t ^  t-i t x 1 t 11 = 1

where L is the lag operator Lyt=yt t and p(L) is a q-th order lag 

polynomial. The roots of l-p(L) are assumed to be outside the unit 

circle. The generalized residuals are given by

ut(A)=Ut+(p(L)-A(L))yt  ̂ so that

u (A)-u (A) = U -U +(p(L)-A(L)) (y -v ,) = +at ’(p~A),t+p t t+p t t + p-1 t-1 t + p t+p-1

where x =U -U , a =(y -y  y -y ), A=(A A )t+p t+p t t+p-1 t+p-1 t-1 t+p-q t-q 1 q

and p=(p, p ).
i q
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Using Proposition B.l we have that

sup |J (u (A),u (A))
A <= K(p,d) t+p-i

(1)

= F(U +e+ds’ |a |) - F(U +e-ds’ |a |) +*■ t t + p-i 1 1 t t+p-i 1

+ F(U -e+ds’|a |) - F(U -e-ds’+|a |v t t+p-i J K t t+p-i

where F(.) is the distribution function of U, and s is a qxl vector of 

ones.

Ey A5 and A6 , together with the law of iterated expectations 

and the mean value theorem,

E[F(Ut+c * d s > w J )  - F(Ut+e-ds’ lat+p_jl)l *

EI E  K . p - r v . 1 1 s 2dH‘ £
1 = 1

using the definition of  ̂ and the fact that E|yJ < m. This last

fact results from the assumption that the AR process is causal, 

together with the assumption that EjU J  < <». We can apply the same 

argument to the other two terms in (1), so it follows that

sup J (u (A) ,u (A))
-rr f , \ e t+P t 'A e K(p,d)

£4dM

and A2 and A3 are satisfied.
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that m=2. Then notice that

Hc<Ufp (X)*Ut(X))"

sup |H (U (A),U (A))|
A ^  K(p,d) G J

103

£ K d  consider 1

l[|x -a ’ (A-p) |<c]l[|x -a ’ (A-p) |<c]-l[|x (<e]l[|x ,|<e]t+p t+p-i t+p+i t+p t+p1 1 t+p+i1

where x =U -U and a =y -y . Therefore,t+p+i t+p+i t+i t+p 7 t+p Jt

sup |H (U (A),U (A))|
A e KCp.d) 3

sup |J (u (A),u (A))|
A e K(p.d) P

+ E sup jj (u (A), u (A)) I
A e K(p,d) c t+p+1 «  J|

using Propositions B.2 and B.3. As the last two terms are bounded, so 

is the term on the right side of this inequality. This proves we may 

apply the BDS statistic to the estimated residuals of an AR(p) process, 

with no resulting distortion on its asymptotic behavior.

4. MA(h)

h
y = U + T 8 U <=*y=U+ 6 (L)U , {U } iid, E|U I < co.yt t u i t-i t t t-i 1 1 t1i = i

where 0 (L) is an h-th order lag polynomial.

Here, u (A)=U +(0(L)-A(L) )U , so that u [A)-u (A) =t t t-i t+p t
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•U )’, A = ( A  A ) ’ and
t-h 1 h

a , where
t+p-i

We repeat the steps of the proof for the AR(q) case, the use

of Proposition B.l, Assumptions A.5 and A.6 , and the Law of Iterated 

Expectations to create two expressions of the type

case. Therefore, applying the BDS test to the residuals of an MA(h) 

requires no correction on BDS statistic’s asymptotic distribution. We 

also note that in the MA(h) case, the process ufc(A) is m-dependent and 

(trivially) strong mixing.

5. ARMA(q,h)

For notational simplicity and because the proof is almost 

immediate from the AR(q) and MA(h) cases, we only consider the

As E|Uj < oo, by assumption, this proves that

E sup
A e K(p,d)

|J (u (A),u (A))| £4dM
1 £ V t+p t J 1

The case m=2 is easily derived from the proof for the AR(q)
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ARMA(1,1) process here. In this case,

y ~Py + U + 0 U  , {U}iid, EIU I < oo, Ipl <1Jt rjt-i t t-i x t/ 1 t1 '

Let u (A)=Ut+(0-v)U i+(p-A)yt with A=(A,v>)’.

Therefore,

u (A)-u (A) =t+p t
U -U + (0-i>)(U -U ) + (p-A)(y -y ) =x +a (p-A),t+p t t+p-i t-i ^ J t+p-i Jt-i t+p t+p-i r

where x =U -U , a =(U -U ,y -y ), and p=(p,0 )’.t+p t+p t t+p-i t+p-i t-i t+p-i •'t-i r

Once again, we represented u (A)-u (A) as x +a (p-A)& r t+p t t+p t+p-i
where a is t+p-1 measurable. Therefore, we can repeat all thet+p-i
steps in proving the AR(q) case. This shows the invariance of the 

asymptotic distribution of the BDS test to the use of estimated 

residuals from an ARMA(1,1) process.

In the cases covered so far, the method of proof utilized the 

reoresentation of u (A)-u (A) as x +a (p-A), where x is t+pt+p t t+p t+p-i
measurable and a is t+p-1 measurable. Clearly, any model where 

u (A)-u (A) can be represented in this way satisfies sufficientt+p t
conditions for the invariance result of the BDS statistic that we seek, 

provided that ut(A) defines a strong mixing process. From these 

considerations we can immediately conclude that some nonlinear 

processes also satisfy Theorem 2.1. As an example, we may easily show
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that nonlinear moving averages processes such as et=u are

among this class of models. We turn now to some models where the 

representation defined above can be obtained only after some 

transforma t i ons.

6. Nonlinear Autoregressions

y = G(Y ,0) + U , {U > ~ iid t t-l t 1 t'

u U)=Ut+ G(Yt i>0)-G(Yt i,A)

l[|Ut,p-Ut*GCYWp_1,8 )-G(Yt.pM.X)-(G(Yt.1.e)-G(Yl.1,»))|<c]

Assume that G(Y ,A) is continuously differentiable in a 

neighborhood of 0. Expand G(Yt , A) in a first-order Taylor series 

around 0 :

G(y, A)=G(y,0)+ VG(y,A*)’ (A-/3), A% K(0,h)

* »where VG(y,A ) is the gradient vector evaluated at A . Therefore,

*e<utU ] ’Ufp(A)) =

1[|U -U + (VG(Yt ,A*)-VG(Y , A*))’(A-/3) | <e] =L 1 t+D t ' t+p-1 t-1 ' '
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= l[|x -a ’ (A-/3) I<el
11 t+p t+p-i 1 1

where x =U -U and a = VG(Y , X )-VG(Y , X )
t+p t+p t t+p-i t+p-i t-i

As for the linear case we have that

sup |J (u (X),u (X))|
X e K(p,d) p

=s4dM

provided that E[|at J] < m. Sufficient to guarantee that this 

condition is satisfied is the following:

sup sup E[|7G(Y ,X)|] < oo 
t X 1

The proof for m=2 follows the same steps as the linear model. 

We have thus proved that under a nonlinear autoregression with an 

additive error term, the asymptotic distribution of the BDS statistic 

is not affected by the estimation procedure, and the subsequent use of 

consistent residuals in place of the true innovations.

8 . Models of Conditional Heteroskedasticity

This section considers models of the type y =<r ut, where ut 

is an iid sequence with E[ut]=0, V[ut]=l. <r̂ is a function of the past 

values of y and a vector of parameters 6. The first model we consider
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is the ARCH(q) specification,

2 2, 2y =o-(Y ,0 )u , <r(Y ,0) = w + F a yJt t-i’ t t-i u i t-ii=i

where w > 0 and the a are nonnegative. Again, Y =(y  ŷ  ).j t-1 t-1 t-q
As discussed previously, the test should be performed on the

2 2 2estimated residuals of N =ln u = In y - In (cr(Y ,0)) . Under thet t t v t-i /
null hypothesis of correct specification, Ut is iid; it follows that 

is also iid. Moreover, since we can rewrite the model as 

N = yt - <r(Yt 1>0), this implies that the asymptotic distribution of 

the BDS statistic is the same when applied to or to N̂ , provided 

that <r satisfies the conditions defined for nonlinear autoregressive 

models. In particular, for the linear ARCH(l) model (assuming that y 

is covariance stationary, that is, a<l),

Vcr(Y ,0 )=l/(u+ay2 Ml , y2 )’, u > 0 and a £ 0.t-i t-i Jt-i

As E|Vo;(Yt,0 ) |=E[l/(u+ay2) , y2/(w+ay2)]’=E[l/(w+ay2) , u2]’ . These two
2expectations are finite provided that E[ut]<co. Note that

2 A l/(w+ayt) s l/w < oo. Therefore, the estimated residuals N̂  from an

ARCH(l) model satisfy condition A2.

More generally, we may apply the logarithmic transformation

used in the ARCH(l) process to a larger set of conditional

heteroskedastic models. We keep in mind that this transformation is

simply a way of transforming the ARCH(l) model into a model with

R eprod u ced  with perm ission o f the copyright ow ner. F urther reproduction prohibited w ithout perm ission.



www.manaraa.com

109

additive noise term, thus it seems quite clear that we may also apply 

the logarithmic transformation to general ARCH and GARCH models. This

can be shown by following the same steps that enabled the

generalization of the proof from the AR(1) case to the AR(q), MA(h) and 

ARMA(q,h) models.

We may additionally apply the logarithmic transformation to

the Exponential GARCH (EGARCH) model proposed by Nelson (1991). In this

approach, the conditional variance of y is given by

CO

In <r2= a + Y /3 g(u ).t t u ie t-i1 = 1

As a consequence, the variable

N sin u2 = In y2-ln(o-(Y ,0))2 t t K t-i 1

is a linear function of the past ut’s. Assuming as in Nelson (1991, p.
CO

352) that [|5 g(u ) has a finite order ARMA representation, the
i = i

residuals N^^) look exactly like those established for the ARMA(q,h) 

case. Therefore, applying the BDS test to the estimated residuals of an 

EGARCH model should cause no distortion.
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Proposition B.1

Let 0,A,a be pxl vectors and let s be a pxl vector of ones. Define

I a 1 = Cla |,...,|a |)’. Also, let J (x,A,a)s;t (x+e’a,A’a)-^ (x,0). Then,i p e € €

f 1 if e-ds’ |a|<|x|<e+ds’ |a| 
sup | J (x,A,a) | = -j
A e K(0 ,d) e [ 0 otherwise

Proof:

1) Let a » 0.

la) Consider first that |x|<e. In this case sup |J (x,A,a)|=l if
A e K(0,d) e

|x-a’(A-0)|>e 4=> x > e+a’(A-0) v x < -e+a’(A-0). As 0^-d < Â  < Oj+d, 

V i=l,2,...,p, we have x > e-da’s v x < -e+da’s <=> |x|>e-ds’a. We

combine the two conditions and have

sup |J (x,A,a)|=l if e-ds’a <|x| < e
A e K(0,d) G

lb) We now consider the other possible case, |x|>e. Then,

sup |J (x,A,a)|=lif |x-a’(A-0 )|<e.
A € K(0,d) C

That is, sup |J (x,A,a)|=l if e < |x| < e+da’s,
A e K(0,d) £

so that, for a>0, sup |J (x,A,a)|=l if e-ds’a < |x| < e+ds’a
A e K(0,d) G

2) We must consider the case where a e Rp. However, by simply
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substituting |a| for a we obtain Proposition B.l.

Proposition B.2

Let 0,A,a,b, be pxl vectors and let s be a pxl vector of ones. Define 

|a| as in Proposition B.l. Let

^(x.y.X.a.bjH^fx+a’P.a’A)^e(y+b’p,b’A)-^e(x,0)^c(y,0).

Then,
fl if (x,y) ed 

v(x,y,0 ) = sup |H (x,y,A,a,b)| = -I
A e K(0,d) e [0 otherwise

where d = { (x,y): e-ds’|a|<|x|<e+ds’|a| v e-ds’|b|<|y|<e+ds’|b| }. 

Proof:

To prove this, consider a>0 and b>0.

1) Suppose |x|>e and |y|>£. So v(x,y,0)=l if |x-a’(A-0)|<£ and

|y-b’ (A-0) |<e. As 110-AIKd, it follows that v(x,y,0)=l if £<|x|<e+ds’a 

and £<|y|<£+ds’b

2) Now, we consider the case |x|<e and |yl<£.

v(x,y,0)=l if |x-a’ (A-/3) |>e or |y-b’(A-/3) |>e (or both). Using the

constraint on A we find that v(x,y,0)=l if: a) £-ds’a<|x|<£ and |y|<e; 

or b) |x|<e and e-s’db< |y | <c; or c) conditions a) and b)
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simultaneously.

3) |x|<e and iy|>e

Proceeding as in 2) and 3), we find that v(x,y,0)=l if e<|x|<e+ds’a and 

lyl<e.

4) |x|>e and |y|<e

This is the mirror image of 3). Therefore, v(x,y,0 )=l if |x|<e and 

e<|y|<e+ds’b.

Putting 1), 2), 3) and 4) together, we find that

f' 1 if (x,y) e d 
v(x,y,0) = sup jH (x,y,A,a,b)| = •(

A e K(0 ,d) e [ 0 otherwise

where d = { (x,y): e-ds’a<|xj<e+ds’a v e-ds’b<|y|<e+ds’b }.

Generalizing the proof for a,b e IRP we get Proposition’s B.2

result.

Proposition B.3.

Let J (z,A,a) and H (x,y,A,a,b) be the kernels defined in Propositions e e
B.l and B.2, respectively. If E sup |J (z,A,a)

A e K(0 ,d) e
sK d , then l
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sap |H (x,y,A,a,b)|
A e K(0,d) G

=s K d 2

where K and Kz are constants and z can be either x or y, two random

variables.

Proof:

By Proposition B.2, we know that

v(x,y,0 ) = sup
X e K(0 ,d)

|He(x,y,Xta,b)| =
' 1 if (x.y) e 

0 otherwise

where d = { (x,y): c-ds’|a|<|x|<e+ds’|a| v e-ds’|b|<|y|<e+ds’|b|}, so 

that

sup |H (x,y,A,a,b)
X e K(0 ,d) e

= Pr(^) s P r ^  U dj, where

= {(x.y): c-ds’|a|<|x|<e+ds’|a|} and 

^ = {(x,y): e-ds’|a|<|y|<e+ds’|a|}

Thus, Pr(*0 U dz) s Pr(dJ+Pr(d2)s 2Kd,

because Pr(^i) = E sup |J (z,X,a)
A e K(0 ,d) €

. i=l,2 . Q.E.D.
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Notes to Chapter 3.

I The stars indicate that we are calculating the corresponding 

statistics using estimated residuals. For the definition of W(.), C(.) 

and s(.) see Chapter 2.

^ Note that /F(V(T)-U(T)) -J-» 0, so the asymptotic behavior of a 

U-statistic and its corresponding V-statistic is the same. See Serfling 

(1980), p. 206.

3
See also Davis, Knight and Liu (1992) for an account of M-estimation 

of linear autoregressions with infinite variance errors. This paper 

proves that robust estimators of the parameters of these models also 

converge faster than the usual rate. Moreover, M-estimation is shown 

to be asymptotically more efficient than least squares.

4 The simulations were carried out in the GAUSS programing language. 

Copies of these programs are available from the author upon request.
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 ̂ Note that, for a<2, the process Ut is on the normal domain of

attraction of a stable distribution with index a —  U e NT>{a). 
,2Therefore U e ND(ol/2) . When a>l and E[Ut]=0,

r2= i y u2= T2/a_1 (T"2/a Y U2). 
t  t t v H

For the case a<2, it follows that 2/a > 1. Therefore, we may
-2/Ct 2use Ibramigov and Linnik (1971, Ch. 2) to show that T

~  2 2/0C-1bounded in probability, so that <r =0 (T ). Consequently,
p

<r=0 (T(2-a)/2) and for a=1.5, <r=0 (T1/6). 
P P
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